Vision Meets Language: Multimodal Transformers Elevating Predictive Power in Visual Question Answering

答疑 计算机科学 变压器 人工智能 自然语言处理 预测能力 工程类 电气工程 电压 哲学 认识论
作者
Sajidul Islam Khandaker,Tahmina Talukdar,Prima Sarker,Md Humaion Kabir Mehedi,Ehsanur Rahman Rhythm,Annajiat Alim Rasel
标识
DOI:10.1109/iccit60459.2023.10441514
摘要

Visual Question Answering (VQA) is a field where computer vision and natural language processing intersect to develop systems capable of comprehending visual information and answering natural language questions. In visual question answering , algorithms interpret real-world images in response to questions expressed in human language. Our paper presents an extensive experimental study on Visual Question Answering (VQA) using a diverse set of multimodal transformers. The VQA task requires systems to comprehend both visual content and natural language questions. To address this challenge, we explore the performance of various pre-trained transformer architectures for encoding questions, including BERT, RoBERTa, and ALBERT, as well as image transformers, such as ViT, DeiT, and BEiT, for encoding images. Multimodal transformers' smooth fusion of visual and text data promotes cross-modal understanding and strengthens reasoning skills. On benchmark datasets like the Visual Question Answering (VQA) v2.0 dataset, we rigorously test and fine-tune these models to assess their effectiveness and compare their performance to more conventional VQA methods. The results show that multimodal transformers significantly outperform traditional techniques in terms of performance. Additionally, the models' attention maps give users insights into how they make decisions, improving interpretability and comprehension. Because of their adaptability, the tested transformer topologies have the potential to be used in a wide range of VQA applications, such as robotics, healthcare, and assistive technology. This study demonstrates the effectiveness and promise of multimodal transformers as a method for improving the effectiveness of visual question-answering systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yeah发布了新的文献求助10
1秒前
hzauhzau发布了新的文献求助10
2秒前
奋斗完成签到,获得积分10
2秒前
3秒前
sghsh完成签到,获得积分10
5秒前
葛优发布了新的文献求助10
8秒前
shine完成签到,获得积分10
9秒前
10秒前
10秒前
领导范儿应助yuanyuan采纳,获得10
11秒前
11秒前
木子木子粒完成签到 ,获得积分10
11秒前
11秒前
11秒前
ding应助dada采纳,获得10
12秒前
辛勤者完成签到,获得积分10
12秒前
12秒前
所所应助xqn采纳,获得10
13秒前
科研废物发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
整齐芷文完成签到,获得积分10
16秒前
淅淅沥沥完成签到,获得积分10
17秒前
五一完成签到,获得积分10
17秒前
星辰大海应助hao采纳,获得10
17秒前
舒心书南完成签到,获得积分10
17秒前
wuxunxun2015发布了新的文献求助10
17秒前
18秒前
蓝蓝发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
Tohka完成签到 ,获得积分10
21秒前
21秒前
22秒前
T1aNer299发布了新的文献求助10
22秒前
me关注了科研通微信公众号
22秒前
CT发布了新的文献求助10
23秒前
灿灿发布了新的文献求助10
23秒前
骆驼翔子完成签到,获得积分10
23秒前
23秒前
Orange应助自由能采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660080
求助须知:如何正确求助?哪些是违规求助? 4831261
关于积分的说明 15089149
捐赠科研通 4818692
什么是DOI,文献DOI怎么找? 2578738
邀请新用户注册赠送积分活动 1533349
关于科研通互助平台的介绍 1492094