Vision Meets Language: Multimodal Transformers Elevating Predictive Power in Visual Question Answering

答疑 计算机科学 变压器 人工智能 自然语言处理 预测能力 工程类 电气工程 电压 哲学 认识论
作者
Sajidul Islam Khandaker,Tahmina Talukdar,Prima Sarker,Md Humaion Kabir Mehedi,Ehsanur Rahman Rhythm,Annajiat Alim Rasel
标识
DOI:10.1109/iccit60459.2023.10441514
摘要

Visual Question Answering (VQA) is a field where computer vision and natural language processing intersect to develop systems capable of comprehending visual information and answering natural language questions. In visual question answering , algorithms interpret real-world images in response to questions expressed in human language. Our paper presents an extensive experimental study on Visual Question Answering (VQA) using a diverse set of multimodal transformers. The VQA task requires systems to comprehend both visual content and natural language questions. To address this challenge, we explore the performance of various pre-trained transformer architectures for encoding questions, including BERT, RoBERTa, and ALBERT, as well as image transformers, such as ViT, DeiT, and BEiT, for encoding images. Multimodal transformers' smooth fusion of visual and text data promotes cross-modal understanding and strengthens reasoning skills. On benchmark datasets like the Visual Question Answering (VQA) v2.0 dataset, we rigorously test and fine-tune these models to assess their effectiveness and compare their performance to more conventional VQA methods. The results show that multimodal transformers significantly outperform traditional techniques in terms of performance. Additionally, the models' attention maps give users insights into how they make decisions, improving interpretability and comprehension. Because of their adaptability, the tested transformer topologies have the potential to be used in a wide range of VQA applications, such as robotics, healthcare, and assistive technology. This study demonstrates the effectiveness and promise of multimodal transformers as a method for improving the effectiveness of visual question-answering systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助傻傻的凌寒采纳,获得10
1秒前
1秒前
秦弼完成签到,获得积分10
2秒前
waibazi发布了新的文献求助10
2秒前
之道发布了新的文献求助10
3秒前
黄宏康完成签到,获得积分20
3秒前
gj2221423发布了新的文献求助10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
xu完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
小马甲应助donb采纳,获得10
6秒前
bkagyin应助1.1采纳,获得10
7秒前
共享精神应助xzzt采纳,获得10
7秒前
小蘑菇应助waibazi采纳,获得10
9秒前
9秒前
善学以致用应助ylc采纳,获得10
9秒前
10秒前
传奇3应助Xenia采纳,获得10
10秒前
Genmii发布了新的文献求助10
11秒前
nuonuo发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
14秒前
14秒前
sys发布了新的文献求助20
14秒前
秦弼发布了新的文献求助10
14秒前
凶狠的太兰完成签到,获得积分20
15秒前
bkagyin应助小白采纳,获得10
15秒前
jessie完成签到,获得积分10
16秒前
慕青应助doctor2023采纳,获得10
16秒前
Akim应助芝芝采纳,获得10
16秒前
马文发布了新的文献求助10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145665
求助须知:如何正确求助?哪些是违规求助? 2797153
关于积分的说明 7823057
捐赠科研通 2453466
什么是DOI,文献DOI怎么找? 1305677
科研通“疑难数据库(出版商)”最低求助积分说明 627532
版权声明 601469