Vision Meets Language: Multimodal Transformers Elevating Predictive Power in Visual Question Answering

答疑 计算机科学 变压器 人工智能 自然语言处理 预测能力 工程类 电气工程 电压 哲学 认识论
作者
Sajidul Islam Khandaker,Tahmina Talukdar,Prima Sarker,Md Humaion Kabir Mehedi,Ehsanur Rahman Rhythm,Annajiat Alim Rasel
标识
DOI:10.1109/iccit60459.2023.10441514
摘要

Visual Question Answering (VQA) is a field where computer vision and natural language processing intersect to develop systems capable of comprehending visual information and answering natural language questions. In visual question answering , algorithms interpret real-world images in response to questions expressed in human language. Our paper presents an extensive experimental study on Visual Question Answering (VQA) using a diverse set of multimodal transformers. The VQA task requires systems to comprehend both visual content and natural language questions. To address this challenge, we explore the performance of various pre-trained transformer architectures for encoding questions, including BERT, RoBERTa, and ALBERT, as well as image transformers, such as ViT, DeiT, and BEiT, for encoding images. Multimodal transformers' smooth fusion of visual and text data promotes cross-modal understanding and strengthens reasoning skills. On benchmark datasets like the Visual Question Answering (VQA) v2.0 dataset, we rigorously test and fine-tune these models to assess their effectiveness and compare their performance to more conventional VQA methods. The results show that multimodal transformers significantly outperform traditional techniques in terms of performance. Additionally, the models' attention maps give users insights into how they make decisions, improving interpretability and comprehension. Because of their adaptability, the tested transformer topologies have the potential to be used in a wide range of VQA applications, such as robotics, healthcare, and assistive technology. This study demonstrates the effectiveness and promise of multimodal transformers as a method for improving the effectiveness of visual question-answering systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiu发布了新的文献求助10
刚刚
Anne应助zzzzzk采纳,获得10
刚刚
迟大猫应助细腻白柏采纳,获得10
刚刚
man完成签到,获得积分10
刚刚
nn完成签到 ,获得积分10
1秒前
CodeCraft应助马铃薯采纳,获得10
1秒前
流川封完成签到,获得积分10
1秒前
1秒前
平淡南霜发布了新的文献求助10
2秒前
神勇的雅香完成签到,获得积分0
2秒前
JWang发布了新的文献求助10
2秒前
3秒前
3秒前
LYM发布了新的文献求助10
4秒前
纸上彩虹完成签到 ,获得积分10
4秒前
调研昵称发布了新的文献求助10
4秒前
4秒前
rosy发布了新的文献求助10
4秒前
Ming完成签到,获得积分10
4秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得30
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
prosperp应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
Enso完成签到 ,获得积分10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
难过的翎应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
中级中级发布了新的文献求助10
6秒前
大个应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
丸子完成签到,获得积分10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678