Vision Meets Language: Multimodal Transformers Elevating Predictive Power in Visual Question Answering

答疑 计算机科学 变压器 人工智能 自然语言处理 预测能力 工程类 电气工程 认识论 哲学 电压
作者
Sajidul Islam Khandaker,Tahmina Talukdar,Prima Sarker,Md Humaion Kabir Mehedi,Ehsanur Rahman Rhythm,Annajiat Alim Rasel
标识
DOI:10.1109/iccit60459.2023.10441514
摘要

Visual Question Answering (VQA) is a field where computer vision and natural language processing intersect to develop systems capable of comprehending visual information and answering natural language questions. In visual question answering , algorithms interpret real-world images in response to questions expressed in human language. Our paper presents an extensive experimental study on Visual Question Answering (VQA) using a diverse set of multimodal transformers. The VQA task requires systems to comprehend both visual content and natural language questions. To address this challenge, we explore the performance of various pre-trained transformer architectures for encoding questions, including BERT, RoBERTa, and ALBERT, as well as image transformers, such as ViT, DeiT, and BEiT, for encoding images. Multimodal transformers' smooth fusion of visual and text data promotes cross-modal understanding and strengthens reasoning skills. On benchmark datasets like the Visual Question Answering (VQA) v2.0 dataset, we rigorously test and fine-tune these models to assess their effectiveness and compare their performance to more conventional VQA methods. The results show that multimodal transformers significantly outperform traditional techniques in terms of performance. Additionally, the models' attention maps give users insights into how they make decisions, improving interpretability and comprehension. Because of their adaptability, the tested transformer topologies have the potential to be used in a wide range of VQA applications, such as robotics, healthcare, and assistive technology. This study demonstrates the effectiveness and promise of multimodal transformers as a method for improving the effectiveness of visual question-answering systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白的千雁完成签到 ,获得积分10
刚刚
1秒前
1秒前
冬枣枣完成签到,获得积分10
1秒前
啄木鸟完成签到 ,获得积分10
1秒前
Hai发布了新的文献求助10
1秒前
喵喵666完成签到,获得积分10
1秒前
江阳宏发布了新的文献求助10
1秒前
研友_8Y26PL完成签到,获得积分10
2秒前
2秒前
安花完成签到,获得积分10
2秒前
2秒前
mmy完成签到,获得积分10
2秒前
活力立诚完成签到,获得积分10
3秒前
wuchang完成签到,获得积分10
3秒前
3秒前
3秒前
寒而不冰发布了新的文献求助10
3秒前
2032jia发布了新的文献求助10
3秒前
dayaya完成签到,获得积分10
3秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
SAKURA应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Maestro_S应助科研通管家采纳,获得10
4秒前
cady完成签到,获得积分10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
让我再眯一会儿完成签到 ,获得积分10
5秒前
orixero应助科研通管家采纳,获得30
5秒前
江愉应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得20
5秒前
xl完成签到,获得积分10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477103
求助须知:如何正确求助?哪些是违规求助? 4578993
关于积分的说明 14366029
捐赠科研通 4507069
什么是DOI,文献DOI怎么找? 2469632
邀请新用户注册赠送积分活动 1456830
关于科研通互助平台的介绍 1430868