肌萎缩侧索硬化
磁刺激
神经科学
外围设备
沉默期
运动神经元
运动皮层
医学
刺激
心理学
疾病
内科学
脊髓
作者
Ryo Otani,Kazumoto Shibuya,Yôichi Suzuki,Tomoki Suichi,Marie Morooka,Yuya Aotsuka,Moeko Ogushi,Satoshi Kuwabara
标识
DOI:10.1136/jnnp-2023-333039
摘要
Background Increased ‘cortical’ and ‘peripheral’ excitability are reportedly associated with shorter survival in amyotrophic lateral sclerosis (ALS) patients, suggesting that hyperexcitability contributes to motor neuron death. However, whether upper or lower motor function has a greater impact on survival is unclear. We aimed to investigate the component that strongly impacts the prognosis of ALS. Methods A total of 103 consecutive patients with ALS who underwent cortical (threshold tracking transcranial magnetic stimulation (TMS)) and motor nerve excitability tests were included. Motor cortical excitability was evaluated using short-interval intracortical inhibition (SICI) during TMS. Motor axonal excitability was assessed using the strength-duration time constant (SDTC). Survival time was defined as the time from examination to death or tracheostomy. Results Compared with healthy subjects, patients with ALS had lower SICI and longer SDTC (p<0.05), indicating increased excitability of cortical motor neurons and motor axons. According to the SICI and SDTC findings, patients were divided into the following four groups: ‘cortical high and peripheral high (high-high)’, ‘high-low’, ‘low-high’ and ‘low-low’ groups. In Kaplan-Meier curves, the ‘high-high’ and ‘low-high’ groups showed significantly shorter survival than the other groups. Multivariate analysis revealed that increased cortical (HR=5.3, p<0.05) and peripheral (HR=20.0, p<0.001) excitability were significantly associated with shorter survival. Conclusions In patients with ALS, both motor cortical and peripheral hyperexcitability independently affected survival time, with peripheral hyperexcitability having a greater impact on shorter survival. The modulation of neuronal/axonal excitability is a potential therapeutic target for ALS.
科研通智能强力驱动
Strongly Powered by AbleSci AI