Predicting the Rapid Progression of Mild Cognitive Impairment by Intestinal Flora and Blood Indicators through Machine Learning Method

医学 内科学 丙氨酸转氨酶 胃肠病学 天冬氨酸转氨酶 痴呆 尿酸 生物 生物化学 疾病 碱性磷酸酶
作者
Lingling Wang,Jing Yan,Huiqin Liu,Xiaohui Zhao,Haihan Song,Juan Yang
出处
期刊:Neurodegenerative Diseases [Karger Publishers]
卷期号:23 (3-4): 43-52
标识
DOI:10.1159/000538023
摘要

<b><i>Introduction:</i></b> The aim of the work was to establish a prediction model of mild cognitive impairment (MCI) progression based on intestinal flora by machine learning method. <b><i>Method:</i></b> A total of 1,013 patients were recruited, in which 87 patients with MCI finished a two-year follow-up. To establish a prediction model, 61 patients were randomly divided into a training set and 26 patients were divided into a testing set. A total of 121 features including demographic characteristics, hematological indicators, and intestinal flora abundance were analyzed. <b><i>Results:</i></b> Of the 87 patients who finished a two-year follow-up, 44 presented rapid progression. Model 1 was established based on 121 features with the accuracy 85%, sensitivity 85%, and specificity 83%. Model 2 was based on the first fifteen features of model 1 (triglyceride, uric acid, alanine transaminase, F-Clostridiaceae, G-Megamonas, S-Megamonas, G-Shigella, G-Shigella, S-Shigella, average hemoglobin concentration, G-Alistipes, S-Collinsella, median cell count, average hemoglobin volume, low-density lipoprotein), with the accuracy 97%, sensitivity 92%, and specificity 100%. Model 3 was based on the first ten features of model 1, with the accuracy 97%, sensitivity 86%, and specificity 100%. Other models based on the demographic characteristics, hematological indicators, or intestinal flora abundance features presented lower sensitivity and specificity. <b><i>Conclusion:</i></b> The 15 features (including intestinal flora abundance) could establish an effective model for predicting rapid MCI progression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助烩面大师采纳,获得10
1秒前
1秒前
1秒前
1秒前
小马过河发布了新的文献求助10
2秒前
ding应助今年我必胖20斤采纳,获得10
2秒前
3秒前
3秒前
小林发布了新的文献求助30
4秒前
4秒前
失眠烨华发布了新的文献求助10
4秒前
weiyu_u发布了新的文献求助30
5秒前
小程同学完成签到 ,获得积分10
5秒前
boltos发布了新的文献求助10
5秒前
舒适灵完成签到,获得积分10
6秒前
lkjh完成签到,获得积分10
6秒前
冷静飞柏发布了新的文献求助10
7秒前
zlf完成签到,获得积分10
7秒前
李爱国应助晚星采纳,获得10
7秒前
大模型应助君君采纳,获得10
7秒前
丘比特应助君君采纳,获得10
7秒前
开心人达完成签到,获得积分10
7秒前
7秒前
雪白的千雁完成签到 ,获得积分10
8秒前
8秒前
9秒前
冷静太君完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
pineapple yang完成签到,获得积分10
10秒前
qweasdzxcqwe发布了新的文献求助10
10秒前
namin完成签到,获得积分10
11秒前
rico完成签到,获得积分10
11秒前
顺顺安完成签到,获得积分10
11秒前
a水爱科研发布了新的文献求助10
12秒前
橙子才是唯一的水果完成签到,获得积分10
12秒前
hongw_liu完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600