Predicting the Rapid Progression of Mild Cognitive Impairment by Intestinal Flora and Blood Indicators through Machine Learning Method

医学 内科学 丙氨酸转氨酶 胃肠病学 天冬氨酸转氨酶 痴呆 尿酸 生物 生物化学 疾病 碱性磷酸酶
作者
Lingling Wang,Jing Yan,Huiqin Liu,Xiaohui Zhao,Haihan Song,Juan Yang
出处
期刊:Neurodegenerative Diseases [S. Karger AG]
卷期号:23 (3-4): 43-52 被引量:2
标识
DOI:10.1159/000538023
摘要

<b><i>Introduction:</i></b> The aim of the work was to establish a prediction model of mild cognitive impairment (MCI) progression based on intestinal flora by machine learning method. <b><i>Method:</i></b> A total of 1,013 patients were recruited, in which 87 patients with MCI finished a two-year follow-up. To establish a prediction model, 61 patients were randomly divided into a training set and 26 patients were divided into a testing set. A total of 121 features including demographic characteristics, hematological indicators, and intestinal flora abundance were analyzed. <b><i>Results:</i></b> Of the 87 patients who finished a two-year follow-up, 44 presented rapid progression. Model 1 was established based on 121 features with the accuracy 85%, sensitivity 85%, and specificity 83%. Model 2 was based on the first fifteen features of model 1 (triglyceride, uric acid, alanine transaminase, F-Clostridiaceae, G-Megamonas, S-Megamonas, G-Shigella, G-Shigella, S-Shigella, average hemoglobin concentration, G-Alistipes, S-Collinsella, median cell count, average hemoglobin volume, low-density lipoprotein), with the accuracy 97%, sensitivity 92%, and specificity 100%. Model 3 was based on the first ten features of model 1, with the accuracy 97%, sensitivity 86%, and specificity 100%. Other models based on the demographic characteristics, hematological indicators, or intestinal flora abundance features presented lower sensitivity and specificity. <b><i>Conclusion:</i></b> The 15 features (including intestinal flora abundance) could establish an effective model for predicting rapid MCI progression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Alas_gulf发布了新的文献求助10
1秒前
简单画笔完成签到,获得积分10
1秒前
chaos完成签到,获得积分10
1秒前
1秒前
zg完成签到,获得积分10
2秒前
Aaaalii发布了新的文献求助10
2秒前
薇薇辣完成签到,获得积分10
2秒前
3秒前
脑洞疼应助你好这位仁兄采纳,获得10
3秒前
星河zp发布了新的文献求助10
3秒前
halabouqii发布了新的文献求助10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
丘比特应助故意的心情采纳,获得10
4秒前
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
包子发布了新的文献求助10
4秒前
小杭76应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
5秒前
小杭76应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
double应助科研通管家采纳,获得30
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
Eliauk完成签到,获得积分10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572