E-beam irradiation of poly(vinylidene fluoride-trifluoroethylene) induces high dielectric constant and all- trans conformation for highly ionic conductive solid-state electrolytes

电介质 材料科学 离子键合 辐照 导电体 氟化物 电解质 固态 常量(计算机编程) 梁(结构) 高分子化学 光电子学 复合材料 无机化学 化学 物理化学 光学 离子 有机化学 电极 物理 计算机科学 核物理学 程序设计语言
作者
Chen Dai,Florian J. Stadler,Zhong‐Ming Li,Yanfei Huang
标识
DOI:10.26599/emd.2023.9370016
摘要

Polymer matrices have a limited ability to dissociate lithium salts and transport ions, thus making most solid-state polymer electrolytes (SPEs) have extremely low ionic conductivities (10−7–10−5 S/cm) at 25°C. In this work, a high-energy electron-beam (e-beam) irradiation is applied to a poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] SPE to improve the ionic conductivity. P(VDF-TrFE) easily shows pure all-trans (TTTT) conformation with all fluorine atoms located on one side of the carbon chain to provide an ion transport highway. E-beam irradiation keeps large amounts of TTTT conformation of P(VDF-TrFE) and produces –CF3 side groups, where the latter expands the interchain distance to split the large ferroelectric domains into nanosize to induce a unique relaxor ferroelectric behavior. This enhances the dielectric constant of irradiated P(VDF-TrFE) from 15 to 20 and thus facilitates lithium salt dissociation. As a consequence, the ionic conductivity of irradiated P(VDF-TrFE) SPE is increased from 5.8 × 10−5 to 1.6 × 10−4 S cm−1 at 25°C. The solid-state Li//Li symmetrical cell cycles for more than 3000 h at 25°C without shortcuts. Furthermore, the solid-state LFP//Li cell cycles stably for more than 350 cycles with a capacity retention of around 91.3% at 1 C and 25°C. This study paves a new way to prepare high-performance SPEs by inducing high dielectric constants and abundant TTTT conformations through e-beam irradiation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
眼睛大世开完成签到 ,获得积分10
刚刚
赤邪发布了新的文献求助10
1秒前
安凉完成签到,获得积分10
1秒前
yangyong完成签到,获得积分10
1秒前
zkkz完成签到,获得积分10
1秒前
打打应助橘子采纳,获得40
1秒前
Jasper应助云澈采纳,获得10
1秒前
隐形曼青应助7777777采纳,获得10
1秒前
科研通AI5应助SCI采纳,获得10
2秒前
芋头不秃头完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
kushdw完成签到,获得积分10
4秒前
傲娇小废柴完成签到,获得积分20
5秒前
TranYan发布了新的文献求助10
5秒前
Sally发布了新的文献求助10
5秒前
sun应助怡然的飞珍采纳,获得20
6秒前
6秒前
7秒前
7秒前
孔雨珍完成签到,获得积分10
8秒前
娇气的春天完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
大模型应助奔奔采纳,获得10
10秒前
11秒前
11秒前
Owen应助西哈哈采纳,获得10
11秒前
Jessie完成签到 ,获得积分10
11秒前
烟花应助孔雨珍采纳,获得10
12秒前
王小志发布了新的文献求助10
12秒前
科研通AI5应助SCI采纳,获得10
12秒前
net完成签到 ,获得积分10
12秒前
Sally完成签到,获得积分10
13秒前
飘逸蘑菇完成签到 ,获得积分10
13秒前
14秒前
小二郎应助tao采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794