Sonography-based multimodal information platform for identifying the surgical pathology of ductal carcinoma in situ

导管癌 医学 活检 接收机工作特性 放射科 乳房成像 逻辑回归 乳腺摄影术 乳腺癌 癌症 内科学
作者
Huaiyu Wu,Yitao Jiang,Hongtian Tian,Xiuqin Ye,Chen Cui,Siyuan Shi,Ming Chen,Zhimin Ding,Shi-Yu Li,Zhibin Huang,Yuwei Luo,Quanzhou Peng,Jinfeng Xu,Fajin Dong
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:245: 108039-108039 被引量:2
标识
DOI:10.1016/j.cmpb.2024.108039
摘要

The risk of ductal carcinoma in situ (DCIS) identified by biopsy often increases during surgery. Therefore, confirming the DCIS grade preoperatively is necessary for clinical decision-making. To train a three-classification deep learning (DL) model based on ultrasound (US), combining clinical data, mammography (MG), US, and core needle biopsy (CNB) pathology to predict low-grade DCIS, intermediate-to-high-grade DCIS, and upstaged DCIS. Data of 733 patients with 754 DCIS cases confirmed by biopsy were retrospectively collected from May 2013 to June 2022 (N1), and other data (N2) were confirmed by biopsy as low-grade DCIS. The lesions were randomly divided into training (n=471), validation (n=142), and test (n = 141) sets to establish the DCIS-Net. Information on the DCIS-Net, clinical (age and sign), US (size, calcifications, type, breast imaging reporting and data system [BI-RADS]), MG (microcalcifications, BI-RADS), and CNB pathology (nuclear grade, architectural features, and immunohistochemistry) were collected. Logistic regression and random forest analyses were conducted to develop Multimodal DCIS-Net to calculate the specificity, sensitivity, accuracy, receiver operating characteristic curve, and area under the curve (AUC). In the test set of N1, the accuracy and AUC of the multimodal DCIS-Net were 0.752–0.766 and 0.859–0.907 in the three-classification task, respectively. The accuracy and AUC for discriminating DCIS from upstaged DCIS were 0.751–0.780 and 0.829–0.861, respectively. In the test set of N2, the accuracy and AUC of discriminating low-grade DCIS from upstaged low-grade DCIS were 0.769–0.987 and 0.818–0.939, respectively. DL was ranked from one to five in the importance of features in the multimodal-DCIS-Net. By developing the DCIS-Net and integrating it with multimodal information, diagnosing low-grade DCIS, intermediate-to high-grade DCIS, and upstaged DCIS is possible. It can also be used to distinguish DCIS from upstaged DCIS and low-grade DCIS from upstaged low-grade DCIS, which could pave the way for the DCIS clinical workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuxunxun2015完成签到,获得积分10
刚刚
1秒前
wzy完成签到,获得积分10
2秒前
大气石头完成签到,获得积分10
2秒前
smiling完成签到 ,获得积分10
3秒前
Dguojiang完成签到,获得积分10
4秒前
Rondab应助南风知我意采纳,获得10
4秒前
平淡访冬完成签到 ,获得积分10
4秒前
毛毛完成签到 ,获得积分10
5秒前
li完成签到 ,获得积分10
5秒前
终于花开日完成签到,获得积分10
6秒前
Cartes完成签到,获得积分10
6秒前
wq完成签到 ,获得积分10
6秒前
科研通AI2S应助李汝嘉采纳,获得10
7秒前
yexing完成签到,获得积分10
7秒前
7秒前
云雾完成签到 ,获得积分10
7秒前
超甜大西瓜完成签到,获得积分10
8秒前
8秒前
hentai完成签到,获得积分10
8秒前
JLUO完成签到,获得积分10
8秒前
欣慰小蕊完成签到,获得积分10
9秒前
舒庆春完成签到,获得积分10
9秒前
默尧完成签到,获得积分10
10秒前
en完成签到,获得积分10
10秒前
11秒前
TQ发布了新的文献求助10
12秒前
许多知识发布了新的文献求助10
13秒前
南宫士晋完成签到 ,获得积分10
14秒前
洽洽瓜子shine完成签到,获得积分10
14秒前
隐形衬衫完成签到 ,获得积分10
15秒前
向雅完成签到,获得积分10
16秒前
kenny完成签到,获得积分10
16秒前
16秒前
昭玥完成签到,获得积分10
16秒前
选课完成签到,获得积分10
16秒前
夏天就是桃子味完成签到,获得积分10
17秒前
18秒前
自然千山完成签到,获得积分10
18秒前
ybwei2008_163发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478