Sonography-based multimodal information platform for identifying the surgical pathology of ductal carcinoma in situ

导管癌 医学 活检 接收机工作特性 放射科 乳房成像 逻辑回归 乳腺摄影术 乳腺癌 癌症 内科学
作者
Huaiyu Wu,Yitao Jiang,Hongtian Tian,Xiuqin Ye,Chen Cui,Siyuan Shi,Ming Chen,Zhimin Ding,Shi-Yu Li,Zhibin Huang,Yuwei Luo,Quanzhou Peng,Jinfeng Xu,Fajin Dong
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:245: 108039-108039 被引量:2
标识
DOI:10.1016/j.cmpb.2024.108039
摘要

The risk of ductal carcinoma in situ (DCIS) identified by biopsy often increases during surgery. Therefore, confirming the DCIS grade preoperatively is necessary for clinical decision-making. To train a three-classification deep learning (DL) model based on ultrasound (US), combining clinical data, mammography (MG), US, and core needle biopsy (CNB) pathology to predict low-grade DCIS, intermediate-to-high-grade DCIS, and upstaged DCIS. Data of 733 patients with 754 DCIS cases confirmed by biopsy were retrospectively collected from May 2013 to June 2022 (N1), and other data (N2) were confirmed by biopsy as low-grade DCIS. The lesions were randomly divided into training (n=471), validation (n=142), and test (n = 141) sets to establish the DCIS-Net. Information on the DCIS-Net, clinical (age and sign), US (size, calcifications, type, breast imaging reporting and data system [BI-RADS]), MG (microcalcifications, BI-RADS), and CNB pathology (nuclear grade, architectural features, and immunohistochemistry) were collected. Logistic regression and random forest analyses were conducted to develop Multimodal DCIS-Net to calculate the specificity, sensitivity, accuracy, receiver operating characteristic curve, and area under the curve (AUC). In the test set of N1, the accuracy and AUC of the multimodal DCIS-Net were 0.752–0.766 and 0.859–0.907 in the three-classification task, respectively. The accuracy and AUC for discriminating DCIS from upstaged DCIS were 0.751–0.780 and 0.829–0.861, respectively. In the test set of N2, the accuracy and AUC of discriminating low-grade DCIS from upstaged low-grade DCIS were 0.769–0.987 and 0.818–0.939, respectively. DL was ranked from one to five in the importance of features in the multimodal-DCIS-Net. By developing the DCIS-Net and integrating it with multimodal information, diagnosing low-grade DCIS, intermediate-to high-grade DCIS, and upstaged DCIS is possible. It can also be used to distinguish DCIS from upstaged DCIS and low-grade DCIS from upstaged low-grade DCIS, which could pave the way for the DCIS clinical workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左右完成签到,获得积分10
1秒前
eason完成签到,获得积分10
2秒前
科研通AI5应助li采纳,获得10
2秒前
Jasper完成签到,获得积分10
2秒前
暗中讨饭完成签到,获得积分10
3秒前
唐新新发布了新的文献求助10
3秒前
小周周完成签到,获得积分10
3秒前
3秒前
berg发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
5秒前
小轩完成签到,获得积分10
6秒前
8秒前
您好完成签到,获得积分20
8秒前
9秒前
夏日发布了新的文献求助30
9秒前
闪电小子发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
无花果应助唐新新采纳,获得10
11秒前
11秒前
12秒前
安徒完成签到,获得积分10
12秒前
13秒前
飞雪含笑发布了新的文献求助10
13秒前
Zhang完成签到,获得积分10
15秒前
LiXiaomeng发布了新的文献求助10
15秒前
16秒前
123发布了新的文献求助10
16秒前
16秒前
搜集达人应助李狗蛋采纳,获得10
17秒前
17秒前
闪电小子完成签到,获得积分10
18秒前
18秒前
18秒前
Felix完成签到,获得积分10
20秒前
小青椒应助mdd采纳,获得30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991412
求助须知:如何正确求助?哪些是违规求助? 4239905
关于积分的说明 13208671
捐赠科研通 4034805
什么是DOI,文献DOI怎么找? 2207529
邀请新用户注册赠送积分活动 1218522
关于科研通互助平台的介绍 1136959