Lightweight detector based on knowledge distillation for magnetic particle inspection of forgings

探测器 计算机科学 背景(考古学) 无损检测 目标检测 人工智能 模式识别(心理学) 物理 量子力学 电信 生物 古生物学
作者
Aixian Shi,Qiang Wu,Xunpeng Qin,Zhiwei Mao,Mengwu Wu
标识
DOI:10.1016/j.ndteint.2024.103052
摘要

Magnetic particle inspection (MPI) is a widely-used technique within the realm of non-destructive testing (NDT), aimed at detecting defects located on or just beneath the surface of ferromagnetic parts. Deep learning-based object detection methods have demonstrated the ability to quickly and accurately identify targets within complex backgrounds, a quality well-aligned with the demands of crack detection using magnetic particles in the context of fluorescent MPI. However, current research notably lacks studies that address the challenges of balancing efficiency and accuracy when handling a substantial volume of images, particularly those requiring detection across the entire surface of components. In this paper, a lightweight detector designed for industrial applications of crack detection in forgings, utilizing knowledge distillation, is proposed. The proposed detector is built upon the framework of the SSD (Single Shot MultiBox Detector), with its backbone engineered using depth-wise separable convolution and inverse residuals. This approach effectively reduces the network size, resulting in a lightweight model that maintains high accuracy through knowledge distillation. Additionally, to further enhance the network’s precision, an enhanced loss function and an attention module are introduced. The effectiveness of this methodology is assessed using a dataset of forging crack magnetic particle indications collected through a MPI platform. Compared to the original SSD, the experimental results demonstrate that our method achieves an improved mean average precision (mAP) of 96.57%, which is 5% higher. Moreover, the model size has been reduced by 53%, and the detection speed has increased to 35.25 FPS (frames per second), representing a 15 FPS improvement over the original SSD’s 20.57 FPS. These results suggest promising applications for the proposed detector in low-computing-power and memory-constrained devices, particularly embedded systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doc完成签到,获得积分10
刚刚
dssdadadds发布了新的文献求助20
1秒前
我被猪艾特了完成签到 ,获得积分10
2秒前
胖头鱼发布了新的文献求助10
2秒前
kmo发布了新的文献求助10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
小二郎应助shiyi采纳,获得10
4秒前
Aurora.H发布了新的文献求助10
5秒前
成就双双完成签到,获得积分10
6秒前
8秒前
勤奋静曼发布了新的文献求助10
8秒前
SciGPT应助隐形的乐瑶采纳,获得10
9秒前
11秒前
开心的访卉完成签到,获得积分10
11秒前
综述王发布了新的文献求助10
13秒前
13秒前
科研小白完成签到,获得积分10
15秒前
16秒前
我是老大应助开心的访卉采纳,获得10
17秒前
奶盖呀发布了新的文献求助10
17秒前
完美世界应助了该采纳,获得10
17秒前
隐形曼青应助pharrah采纳,获得10
17秒前
小兵发布了新的文献求助10
17秒前
可爱的函函应助kmo采纳,获得10
20秒前
刘三哥完成签到 ,获得积分10
20秒前
Mm林完成签到 ,获得积分10
20秒前
培风发布了新的文献求助10
20秒前
21秒前
Lucas应助综述王采纳,获得10
21秒前
CipherSage应助我被猪艾特了采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152