Lightweight detector based on knowledge distillation for magnetic particle inspection of forgings

探测器 计算机科学 背景(考古学) 无损检测 目标检测 人工智能 模式识别(心理学) 物理 量子力学 电信 生物 古生物学
作者
Aixian Shi,Qiang Wu,Xunpeng Qin,Zhiwei Mao,Mengwu Wu
标识
DOI:10.1016/j.ndteint.2024.103052
摘要

Magnetic particle inspection (MPI) is a widely-used technique within the realm of non-destructive testing (NDT), aimed at detecting defects located on or just beneath the surface of ferromagnetic parts. Deep learning-based object detection methods have demonstrated the ability to quickly and accurately identify targets within complex backgrounds, a quality well-aligned with the demands of crack detection using magnetic particles in the context of fluorescent MPI. However, current research notably lacks studies that address the challenges of balancing efficiency and accuracy when handling a substantial volume of images, particularly those requiring detection across the entire surface of components. In this paper, a lightweight detector designed for industrial applications of crack detection in forgings, utilizing knowledge distillation, is proposed. The proposed detector is built upon the framework of the SSD (Single Shot MultiBox Detector), with its backbone engineered using depth-wise separable convolution and inverse residuals. This approach effectively reduces the network size, resulting in a lightweight model that maintains high accuracy through knowledge distillation. Additionally, to further enhance the network’s precision, an enhanced loss function and an attention module are introduced. The effectiveness of this methodology is assessed using a dataset of forging crack magnetic particle indications collected through a MPI platform. Compared to the original SSD, the experimental results demonstrate that our method achieves an improved mean average precision (mAP) of 96.57%, which is 5% higher. Moreover, the model size has been reduced by 53%, and the detection speed has increased to 35.25 FPS (frames per second), representing a 15 FPS improvement over the original SSD’s 20.57 FPS. These results suggest promising applications for the proposed detector in low-computing-power and memory-constrained devices, particularly embedded systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒月完成签到 ,获得积分10
刚刚
叁叁完成签到 ,获得积分10
2秒前
狗子爱吃桃桃完成签到 ,获得积分10
6秒前
btcat完成签到,获得积分10
7秒前
DocZhao完成签到 ,获得积分10
14秒前
穆奕完成签到 ,获得积分10
15秒前
mzrrong完成签到 ,获得积分10
17秒前
张靖超完成签到 ,获得积分10
21秒前
游01完成签到 ,获得积分10
23秒前
帅气的海露完成签到 ,获得积分10
23秒前
11完成签到,获得积分10
26秒前
天才小能喵完成签到 ,获得积分0
31秒前
亮总完成签到 ,获得积分10
33秒前
weng完成签到,获得积分10
34秒前
gabee完成签到 ,获得积分10
34秒前
cola完成签到 ,获得积分10
38秒前
借两颗星星完成签到,获得积分10
41秒前
海鹏完成签到 ,获得积分10
43秒前
Krim完成签到 ,获得积分10
43秒前
47秒前
芹123完成签到,获得积分10
48秒前
Zheng完成签到 ,获得积分10
56秒前
JH完成签到 ,获得积分10
1分钟前
是我不得开心妍完成签到 ,获得积分10
1分钟前
友好的牛排完成签到,获得积分10
1分钟前
adazbq完成签到 ,获得积分10
1分钟前
MoodMeed完成签到,获得积分10
1分钟前
xyzlancet完成签到,获得积分10
1分钟前
talpionchen完成签到,获得积分10
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
llhh2024完成签到,获得积分10
1分钟前
黄花完成签到 ,获得积分10
1分钟前
四夕完成签到 ,获得积分10
1分钟前
木之尹完成签到 ,获得积分10
1分钟前
Ava应助Starr44采纳,获得10
1分钟前
spring完成签到 ,获得积分0
1分钟前
优雅的平安完成签到 ,获得积分10
1分钟前
摩天轮完成签到 ,获得积分10
1分钟前
PM2555完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150630
求助须知:如何正确求助?哪些是违规求助? 2802158
关于积分的说明 7846153
捐赠科研通 2459431
什么是DOI,文献DOI怎么找? 1309243
科研通“疑难数据库(出版商)”最低求助积分说明 628793
版权声明 601757