亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid Masked Image Modeling for 3D Medical Image Segmentation

计算机科学 人工智能 分割 模式识别(心理学) 编码器 图像分割 像素 计算机视觉 机器学习 操作系统
作者
Zhaohu Xing,Lei Zhu,Lequan Yu,Zhiheng Xing,Liang Wan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2115-2125 被引量:24
标识
DOI:10.1109/jbhi.2024.3360239
摘要

Masked image modeling (MIM) with transformer backbones has recently been exploited as a powerful self-supervised pre-training technique. The existing MIM methods adopt the strategy to mask random patches of the image and reconstruct the missing pixels, which only considers semantic information at a lower level, and causes a long pre-training time. This paper presents HybridMIM, a novel hybrid self-supervised learning method based on masked image modeling for 3D medical image segmentation. Specifically, we design a two-level masking hierarchy to specify which and how patches in sub-volumes are masked, effectively providing the constraints of higher level semantic information. Then we learn the semantic information of medical images at three levels, including: 1) partial region prediction to reconstruct key contents of the 3D image, which largely reduces the pre-training time burden (pixel-level); 2) patch-masking perception to learn the spatial relationship between the patches in each sub-volume (region-level); and 3) drop-out-based contrastive learning between samples within a mini-batch, which further improves the generalization ability of the framework (sample-level). The proposed framework is versatile to support both CNN and transformer as encoder backbones, and also enables to pre-train decoders for image segmentation. We conduct comprehensive experiments on five widely-used public medical image segmentation datasets, including BraTS2020, BTCV, MSD Liver, MSD Spleen, and BraTS2023. The experimental results show the clear superiority of HybridMIM against competing supervised methods, masked pre-training approaches, and other self-supervised methods, in terms of quantitative metrics, speed performance and qualitative observations. The codes of HybridMIM are available at https://github.com/ge-xing/HybridMIM .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻的芳完成签到,获得积分10
2秒前
3秒前
火星上的宝马完成签到,获得积分10
5秒前
隔壁老王发布了新的文献求助10
8秒前
悲凉的忆南完成签到,获得积分10
9秒前
陈旧完成签到,获得积分10
12秒前
欣欣子完成签到,获得积分10
15秒前
17秒前
sunstar完成签到,获得积分10
18秒前
雾里发布了新的文献求助10
21秒前
yxl完成签到,获得积分10
22秒前
23秒前
可耐的盈完成签到,获得积分10
25秒前
绿毛水怪完成签到,获得积分10
28秒前
28秒前
lsc完成签到,获得积分10
31秒前
32秒前
小fei完成签到,获得积分10
34秒前
万能图书馆应助雾里采纳,获得10
35秒前
wq发布了新的文献求助10
36秒前
麻辣薯条完成签到,获得积分10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
bkagyin应助科研通管家采纳,获得10
38秒前
Criminology34应助科研通管家采纳,获得10
38秒前
Criminology34应助科研通管家采纳,获得10
38秒前
Criminology34应助科研通管家采纳,获得10
38秒前
时尚身影完成签到,获得积分10
41秒前
CR7应助Yini采纳,获得20
42秒前
流苏2完成签到,获得积分10
45秒前
Lucas应助买三个包子吧采纳,获得10
1分钟前
wq发布了新的文献求助10
1分钟前
在水一方应助wq采纳,获得10
1分钟前
BTW完成签到,获得积分10
1分钟前
甜橙完成签到 ,获得积分10
1分钟前
1分钟前
年少完成签到 ,获得积分10
1分钟前
科目三应助可靠的寒风采纳,获得10
1分钟前
胖胖的江鸟完成签到 ,获得积分10
1分钟前
黄淳完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664241
求助须知:如何正确求助?哪些是违规求助? 4859506
关于积分的说明 15107358
捐赠科研通 4822753
什么是DOI,文献DOI怎么找? 2581699
邀请新用户注册赠送积分活动 1535922
关于科研通互助平台的介绍 1494120