Digital Image Enhancement Using MirNet and Zero-Deep Curve Estimation (Zero-DCE)

零(语言学) 图像(数学) 计算机科学 接地零点 计算机视觉 人工智能 数学 物理 哲学 语言学 核物理学
作者
Purbandini,Chastine Fatichah,Bilqis Amaliah
标识
DOI:10.1109/icitisee58992.2023.10404895
摘要

Increasing public concern about security due to the lack of CCTV monitoring and lighting at night. The problem is that the quality of CCTV is low if the room does not have normal lighting or even tends to be dark. Images produced from cameras that have poor performance produce dark images so that the resulting information cannot be used for the next process. In this research, the image improvement results of the MIRNet and Zero-DCE methods were compared, from this comparison the best method was obtained. To improve the quality of low/dark images, deep learning-based approaches such as MIRNet and Zero-Deep Curve Estimation (Zero-DCE) have received great attention. This study aims to compare the performance of both approaches in the context of image enhancement in low-light conditions. This research uses Low-Light (LoL) and real CCTV datasets. The data is divided into training and testing data. Then the data was analyzed using MIRNet and Zero-DCE. The test results using MIRNet have a PSNR of 27.86 dB and an MSE of 10.595. Meanwhile, Zero-DCE has average PSNR and MSE values of 28.055 dB and 10.204. The PSNR and MSE results show that Zero-DCE has the best average results between the two existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐冷雁完成签到,获得积分10
刚刚
1秒前
ding应助Become采纳,获得10
2秒前
2秒前
2秒前
luojun发布了新的文献求助10
3秒前
zzzzzzzzzzzzy发布了新的文献求助10
3秒前
QQQ完成签到,获得积分10
3秒前
元欣完成签到,获得积分10
5秒前
小蘑菇应助清爽的雅青采纳,获得10
6秒前
安塘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
杨杨发布了新的文献求助10
8秒前
8秒前
9秒前
wang发布了新的文献求助10
12秒前
月不笑发布了新的文献求助10
12秒前
情怀应助瑞思摆采纳,获得10
13秒前
Xiaoshen发布了新的文献求助10
16秒前
黎明发布了新的文献求助10
20秒前
21秒前
情怀应助月不笑采纳,获得10
21秒前
星辰大海应助小公举采纳,获得10
22秒前
CodeCraft应助秋秋采纳,获得10
23秒前
柒柒完成签到,获得积分10
23秒前
烂漫映秋完成签到,获得积分10
24秒前
24秒前
桐桐应助颠倒梦想采纳,获得10
24秒前
一只小锦李完成签到,获得积分20
25秒前
思源应助语上采纳,获得10
27秒前
安塘完成签到,获得积分20
28秒前
28秒前
脑洞疼应助volvoamg采纳,获得10
28秒前
28秒前
29秒前
阿白完成签到,获得积分10
29秒前
thousandlong发布了新的文献求助20
30秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515965
求助须知:如何正确求助?哪些是违规求助? 3098115
关于积分的说明 9238144
捐赠科研通 2793134
什么是DOI,文献DOI怎么找? 1532862
邀请新用户注册赠送积分活动 712391
科研通“疑难数据库(出版商)”最低求助积分说明 707256