锌
水溶液
阳极
电偶阳极
材料科学
电池(电)
电解质
过电位
阴极
化学工程
钒
无机化学
电化学
化学
冶金
电极
有机化学
阴极保护
工程类
功率(物理)
物理
物理化学
量子力学
作者
Wei Ling,Chenxi Nie,Xiongwei Wu,Xian‐Xiang Zeng,Funian Mo,Qiang Ma,Zhouguang Lu,Guangfu Luo,Yan Huang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-01-31
卷期号:18 (6): 5003-5016
被引量:22
标识
DOI:10.1021/acsnano.3c11115
摘要
The cycling stability of a thin zinc anode under high zinc utilization has a critical impact on the overall energy density and practical lifetime of zinc ion batteries. In this study, an ion sieve protection layer (ZnSnF@Zn) was constructed in situ on the surface of a zinc anode by chemical replacement. The ion sieve facilitated the transport and desolvation of zinc ions at the anode/electrolyte interface, reduced the zinc deposition overpotential, and inhibited side reactions. Under a 50% zinc utilization, the symmetrical battery with this protection layer maintained stable cycling for 250 h at 30 mA cm–2. Matched with high-load self-supported vanadium-based cathodes (18–20 mg cm–2), the coin battery with 50% zinc utilization possessed an energy density retention of 94.3% after 1000 cycles at 20 mA cm–2. Furthermore, the assembled pouch battery delivered a whole energy density of 61.3 Wh kg–1, surpassing the highest mass energy density among reported mild zinc batteries, and retained 76.7% of the energy density and 85.3% (0.53 Ah) of the capacity after 300 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI