医学
眼底(子宫)
眼科
糖尿病性视网膜病变
检眼镜
验光服务
人工智能
黄斑变性
青光眼
深度学习
视网膜
计算机科学
糖尿病
内分泌学
作者
Qingqing Tang,Haoxin Wang,Dawen Wu,Meixia Zhang
标识
DOI:10.18240/ijo.2024.01.24
摘要
AIM: To summarize the application of deep learning in detecting ophthalmic disease with ultrawide-field fundus images and analyze the advantages, limitations, and possible solutions common to all tasks. METHODS: We searched three academic databases, including PubMed, Web of Science, and Ovid, with the date of August 2022. We matched and screened according to the target keywords and publication year and retrieved a total of 4358 research papers according to the keywords, of which 23 studies were retrieved on applying deep learning in diagnosing ophthalmic disease with ultrawide-field images. RESULTS: Deep learning in ultrawide-field images can detect various ophthalmic diseases and achieve great performance, including diabetic retinopathy, glaucoma, age-related macular degeneration, retinal vein occlusions, retinal detachment, and other peripheral retinal diseases. Compared to fundus images, the ultrawide-field fundus scanning laser ophthalmoscopy enables the capture of the ocular fundus up to 200° in a single exposure, which can observe more areas of the retina. CONCLUSION: The combination of ultrawide-field fundus images and artificial intelligence will achieve great performance in diagnosing multiple ophthalmic diseases in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI