光催化
罗丹明B
材料科学
复合数
三元运算
催化作用
乙二醇
塔菲尔方程
光致发光
核化学
化学工程
电化学
复合材料
化学
有机化学
电极
物理化学
光电子学
计算机科学
工程类
程序设计语言
作者
Xiangzhi Huang,Mingxuan Sun,Muhammad Humayun,Shuyan Li,Junjie Zhao,Haohao Chen,Ziyang Li
标识
DOI:10.1016/j.jallcom.2023.173025
摘要
Herein, a series of N-graphyne-Bi/BiOBr composites are fabricated via solvothermal method by using Bi(NO3)3·5 H2O, KBr, and nitrogen-doped graphyne as precursor materials in Ethylene glycol. The as-prepared ternary composites show flower-like three-dimensional microspheres self-assembled by nanosheets. N-graphyne contributes to in-situ formation of Bi0 on BiOBr microspheres. For photocatalytic removal of contaminants, the adsorption capacity of 1%-N-GY-Bi/BiOBr composite toward rhodamine B (RhB) is found to be 900.0 mg/g, which is 2.2 times higher than that of the pristine Bi/BiOBr photocatalyst. Moreover, compared to the Bi/BiOBr photocatalyst, the optimized 1%-N-GY-Bi/BiOBr composite revealed a 1.49 and 1.54-fold enhanced degradation performance for RhB and levofloxacin, respectively. Additionally, it is found that superoxide radical (·O2-) is the major active specie involved in the photocatalytic degradation process. The performance of the composites is also evaluated for nitrogen fixation. The NH3 production rate of the optimized ternary composite in water under UV–Vis light irradiation (i.e., 5.68 μmol·gcat−1·h−1) is 3.5 folds higher than that of the Bi/BiOBr. In addition, the stability of 1%-N-GY-Bi/BiOBr composite is also confirmed by the retention of 89.3% of RhB degradation performance and 88% NH3 production during N2 fixation after three catalytic cycles. Moreover, the mechanism is systematically explored by the results of photoluminescence spectra, photo-current, Tafel plots, electrochemical impedance, and Mott-Schottky curves, etc. In short, this study confirms that N-GY modification is an effective strategy for improving the photocatalytic performance of Bi/BiOBr.
科研通智能强力驱动
Strongly Powered by AbleSci AI