Cluster-based prognostication in glioblastoma: Unveiling heterogeneity based on diffusion and perfusion similarities

胶质母细胞瘤 层次聚类 聚类分析 医学 比例危险模型 磁共振弥散成像 扩散成像 脑血流 灌注 内科学 肿瘤科 核医学 磁共振成像 放射科 计算机科学 人工智能 癌症研究
作者
Martha Foltyn‐Dumitru,Tobias Keßler,Felix Sahm,Wolfgang Wick,Sabine Heiland,Martin Bendszus,Philipp Kickingereder,Marianne Schell
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (6): 1099-1108 被引量:2
标识
DOI:10.1093/neuonc/noad259
摘要

Abstract Background While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival. Methods A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership. Results Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (P = 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (P ≤ 0.004 each). Conclusions Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助Shixin采纳,获得10
刚刚
花花完成签到,获得积分10
刚刚
1秒前
Liu发布了新的文献求助10
2秒前
斯文败类应助张张采纳,获得10
2秒前
3秒前
jlhnt完成签到 ,获得积分10
3秒前
糍粑发布了新的文献求助10
3秒前
guoguo完成签到,获得积分10
4秒前
6秒前
无辜靖巧完成签到 ,获得积分10
8秒前
充电宝应助6666采纳,获得10
8秒前
8秒前
光亮的依凝完成签到,获得积分10
8秒前
BallQ完成签到,获得积分10
8秒前
zzj完成签到,获得积分10
8秒前
FashionBoy应助Roachw采纳,获得10
9秒前
姜恒发布了新的文献求助10
9秒前
benzene完成签到 ,获得积分10
9秒前
yanzilin发布了新的文献求助10
9秒前
苏素肃发布了新的文献求助10
10秒前
qifei完成签到 ,获得积分10
10秒前
舍瓦完成签到,获得积分10
11秒前
why完成签到,获得积分10
11秒前
木林森发布了新的文献求助10
11秒前
烂漫凡柔发布了新的文献求助10
11秒前
传奇3应助22采纳,获得10
12秒前
胡晓平完成签到,获得积分10
13秒前
Summer完成签到,获得积分10
13秒前
鲤鱼雨泽完成签到,获得积分10
13秒前
wzhnb完成签到,获得积分10
14秒前
nojego完成签到,获得积分10
14秒前
倩倩完成签到,获得积分10
14秒前
hhh完成签到 ,获得积分10
14秒前
苏苏完成签到 ,获得积分10
14秒前
ShanYexia完成签到,获得积分10
15秒前
星辰大海应助轻松豌豆采纳,获得10
15秒前
xyj完成签到,获得积分10
15秒前
上官若男应助jinzhituoyan采纳,获得10
16秒前
李健的小迷弟应助wzhnb采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685887
关于积分的说明 14840244
捐赠科研通 4675397
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144