Cluster-based prognostication in glioblastoma: Unveiling heterogeneity based on diffusion and perfusion similarities

胶质母细胞瘤 层次聚类 聚类分析 医学 比例危险模型 磁共振弥散成像 扩散成像 脑血流 灌注 内科学 肿瘤科 核医学 磁共振成像 放射科 计算机科学 人工智能 癌症研究
作者
Martha Foltyn‐Dumitru,Tobias Keßler,Felix Sahm,Wolfgang Wick,Sabine Heiland,Martin Bendszus,Philipp Kickingereder,Marianne Schell
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (6): 1099-1108 被引量:2
标识
DOI:10.1093/neuonc/noad259
摘要

Abstract Background While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival. Methods A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership. Results Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (P = 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (P ≤ 0.004 each). Conclusions Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunnyqqz完成签到,获得积分10
2秒前
无情问枫完成签到 ,获得积分10
2秒前
嘻嘻哈哈完成签到 ,获得积分0
6秒前
yuanshi完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
JUAN完成签到,获得积分10
13秒前
14秒前
俏皮的老城完成签到 ,获得积分10
15秒前
dmr完成签到,获得积分10
16秒前
我要读博士完成签到 ,获得积分10
16秒前
沉静问芙完成签到 ,获得积分10
19秒前
菜小芽完成签到 ,获得积分10
21秒前
赧赧完成签到 ,获得积分10
21秒前
苏信怜完成签到,获得积分10
22秒前
方方完成签到 ,获得积分10
25秒前
xmqaq完成签到,获得积分10
27秒前
雪影完成签到 ,获得积分10
27秒前
SciGPT应助Daisy采纳,获得10
28秒前
xelloss完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
34秒前
合适否而非完成签到,获得积分10
38秒前
语恒完成签到,获得积分10
39秒前
思ning完成签到 ,获得积分10
40秒前
朱孟研应助海姆立克@4869采纳,获得10
43秒前
llf应助you采纳,获得10
44秒前
Bonaventure完成签到,获得积分10
47秒前
文毛完成签到,获得积分10
50秒前
量子星尘发布了新的文献求助10
51秒前
sponge完成签到 ,获得积分10
52秒前
好好应助科研通管家采纳,获得10
53秒前
PPPPPP完成签到,获得积分10
53秒前
好好应助科研通管家采纳,获得10
53秒前
好好应助科研通管家采纳,获得10
53秒前
好好应助科研通管家采纳,获得10
53秒前
123完成签到 ,获得积分10
53秒前
好好应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
好好应助科研通管家采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664739
求助须知:如何正确求助?哪些是违规求助? 4868979
关于积分的说明 15108502
捐赠科研通 4823434
什么是DOI,文献DOI怎么找? 2582356
邀请新用户注册赠送积分活动 1536359
关于科研通互助平台的介绍 1494797