Cluster-based prognostication in glioblastoma: Unveiling heterogeneity based on diffusion and perfusion similarities

胶质母细胞瘤 层次聚类 聚类分析 医学 比例危险模型 磁共振弥散成像 扩散成像 脑血流 灌注 内科学 肿瘤科 核医学 磁共振成像 放射科 计算机科学 人工智能 癌症研究
作者
Martha Foltyn‐Dumitru,Tobias Keßler,Felix Sahm,Wolfgang Wick,Sabine Heiland,Martin Bendszus,Philipp Kickingereder,Marianne Schell
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (6): 1099-1108 被引量:2
标识
DOI:10.1093/neuonc/noad259
摘要

Abstract Background While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival. Methods A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership. Results Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (P = 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (P ≤ 0.004 each). Conclusions Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liars发布了新的文献求助10
1秒前
Jeffery426发布了新的文献求助10
2秒前
2秒前
chen完成签到,获得积分10
2秒前
uuunnn完成签到,获得积分10
2秒前
细腻天蓝完成签到 ,获得积分10
2秒前
二师兄完成签到,获得积分10
3秒前
3秒前
春娟完成签到,获得积分10
4秒前
weixiaozdw发布了新的文献求助10
4秒前
邱文发布了新的文献求助10
4秒前
852应助ashley325采纳,获得10
5秒前
爆米花应助Giroro_roro采纳,获得10
5秒前
余乐驹完成签到,获得积分10
5秒前
5秒前
bodhi发布了新的文献求助10
5秒前
i十七发布了新的文献求助10
5秒前
5秒前
5秒前
刘昊政完成签到,获得积分20
5秒前
洪焕良完成签到,获得积分10
6秒前
赵清发布了新的文献求助10
6秒前
大模型应助fsky采纳,获得30
7秒前
慕青应助Wayi采纳,获得10
7秒前
上官若男应助花生采纳,获得10
7秒前
8秒前
Neuro_dan完成签到,获得积分0
8秒前
三两白菜完成签到,获得积分10
9秒前
SUN发布了新的文献求助10
9秒前
爆米花应助多喝水采纳,获得10
10秒前
10秒前
10秒前
缓慢如南完成签到,获得积分0
11秒前
11秒前
星辰大海应助晚灯君采纳,获得10
11秒前
Litianxue发布了新的文献求助10
11秒前
qq完成签到,获得积分10
11秒前
12秒前
孙福禄应助dtcao采纳,获得10
12秒前
JamesPei应助研友_Z63Wg8采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620