Cluster-based prognostication in glioblastoma: Unveiling heterogeneity based on diffusion and perfusion similarities

胶质母细胞瘤 层次聚类 聚类分析 医学 比例危险模型 磁共振弥散成像 扩散成像 脑血流 灌注 内科学 肿瘤科 核医学 磁共振成像 放射科 计算机科学 人工智能 癌症研究
作者
Martha Foltyn‐Dumitru,Tobias Keßler,Felix Sahm,Wolfgang Wick,Sabine Heiland,Martin Bendszus,Philipp Kickingereder,Marianne Schell
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (6): 1099-1108 被引量:2
标识
DOI:10.1093/neuonc/noad259
摘要

Abstract Background While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival. Methods A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership. Results Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (P = 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (P ≤ 0.004 each). Conclusions Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Coco完成签到 ,获得积分10
刚刚
刚刚
1秒前
mengdewen发布了新的文献求助30
1秒前
OU发布了新的文献求助10
1秒前
2秒前
科研通AI6应助伞下铭采纳,获得10
2秒前
科研通AI6应助伞下铭采纳,获得10
2秒前
CipherSage应助干净的友卉采纳,获得10
2秒前
dada完成签到 ,获得积分10
3秒前
3秒前
科研小卡拉米完成签到,获得积分10
4秒前
SciGPT应助CHINA_C13采纳,获得10
4秒前
orixero应助CHINA_C13采纳,获得10
4秒前
CodeCraft应助CHINA_C13采纳,获得150
4秒前
科研通AI6应助CHINA_C13采纳,获得150
4秒前
科研通AI6应助CHINA_C13采纳,获得10
4秒前
科研通AI6应助CHINA_C13采纳,获得150
4秒前
小羊先生完成签到 ,获得积分10
4秒前
云游归尘发布了新的文献求助10
5秒前
小童发布了新的文献求助10
5秒前
饱满以松完成签到 ,获得积分10
5秒前
5秒前
6秒前
平平发布了新的文献求助10
6秒前
凶狠的储发布了新的文献求助10
6秒前
冰菱完成签到,获得积分10
6秒前
Owen应助碎碎采纳,获得10
6秒前
warithy发布了新的文献求助10
7秒前
Ethanyoyo0917完成签到,获得积分10
7秒前
Ava应助优雅的老姆采纳,获得10
7秒前
liekkas发布了新的文献求助10
7秒前
8秒前
小赵发布了新的文献求助30
9秒前
背包包包应助知性的雅彤采纳,获得10
9秒前
10秒前
DHY发布了新的文献求助10
10秒前
疯狂的问枫完成签到,获得积分20
11秒前
李健应助warithy采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002