Cluster-based prognostication in glioblastoma: Unveiling heterogeneity based on diffusion and perfusion similarities

胶质母细胞瘤 层次聚类 聚类分析 医学 比例危险模型 磁共振弥散成像 扩散成像 脑血流 灌注 内科学 肿瘤科 核医学 磁共振成像 放射科 计算机科学 人工智能 癌症研究
作者
Martha Foltyn‐Dumitru,Tobias Keßler,Felix Sahm,Wolfgang Wick,Sabine Heiland,Martin Bendszus,Philipp Kickingereder,Marianne Schell
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (6): 1099-1108 被引量:2
标识
DOI:10.1093/neuonc/noad259
摘要

Abstract Background While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival. Methods A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership. Results Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (P = 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (P ≤ 0.004 each). Conclusions Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的寄灵完成签到,获得积分10
刚刚
lulu发布了新的文献求助10
2秒前
咕噜咕噜完成签到,获得积分10
3秒前
4秒前
背后尔安完成签到,获得积分10
4秒前
绿豆冰完成签到,获得积分10
6秒前
pep完成签到 ,获得积分10
6秒前
9秒前
王乐康完成签到,获得积分10
10秒前
11秒前
12秒前
LYChou发布了新的文献求助10
13秒前
fuan完成签到,获得积分10
14秒前
16秒前
16秒前
尧尧发布了新的文献求助10
17秒前
亲爱的安德烈完成签到,获得积分10
20秒前
可可奇发布了新的文献求助10
21秒前
22秒前
老仙翁发布了新的文献求助200
23秒前
HK完成签到,获得积分10
23秒前
幽默沛山完成签到 ,获得积分10
23秒前
Ava应助碧蓝的河马采纳,获得10
27秒前
满意的冰凡完成签到,获得积分10
28秒前
uu完成签到,获得积分10
28秒前
寻123发布了新的文献求助10
28秒前
流沙完成签到,获得积分10
28秒前
Yang完成签到,获得积分10
29秒前
30秒前
桐桐应助xh采纳,获得10
31秒前
wsyiming完成签到,获得积分10
33秒前
满意的青寒完成签到 ,获得积分10
35秒前
36秒前
华仔应助刻苦的元灵采纳,获得10
38秒前
TheSail完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
38秒前
向日葵完成签到,获得积分10
38秒前
39秒前
zyshao完成签到,获得积分10
40秒前
寻123完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604031
求助须知:如何正确求助?哪些是违规求助? 4688850
关于积分的说明 14856729
捐赠科研通 4696120
什么是DOI,文献DOI怎么找? 2541105
邀请新用户注册赠送积分活动 1507256
关于科研通互助平台的介绍 1471832