Cluster-based prognostication in glioblastoma: Unveiling heterogeneity based on diffusion and perfusion similarities

胶质母细胞瘤 层次聚类 聚类分析 医学 比例危险模型 磁共振弥散成像 扩散成像 脑血流 灌注 内科学 肿瘤科 核医学 磁共振成像 放射科 计算机科学 人工智能 癌症研究
作者
Martha Foltyn‐Dumitru,Tobias Keßler,Felix Sahm,Wolfgang Wick,Sabine Heiland,Martin Bendszus,Philipp Kickingereder,Marianne Schell
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (6): 1099-1108 被引量:2
标识
DOI:10.1093/neuonc/noad259
摘要

Abstract Background While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival. Methods A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership. Results Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (P = 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (P ≤ 0.004 each). Conclusions Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Winter完成签到,获得积分10
1秒前
JoySue完成签到,获得积分20
1秒前
灰惨发布了新的文献求助10
2秒前
小王好饿发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI5应助卷毛兔采纳,获得50
3秒前
年轻时光完成签到,获得积分20
6秒前
等待的剑身完成签到,获得积分10
6秒前
1111发布了新的文献求助10
7秒前
十七关注了科研通微信公众号
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
wer完成签到 ,获得积分10
9秒前
HeAuBook发布了新的文献求助10
9秒前
景一诚发布了新的文献求助10
10秒前
LL发布了新的文献求助10
11秒前
12秒前
sway发布了新的文献求助20
12秒前
13秒前
卷毛兔完成签到,获得积分10
13秒前
陶醉的斓完成签到,获得积分10
14秒前
bkagyin应助1111采纳,获得10
14秒前
pignai完成签到,获得积分10
16秒前
景一诚完成签到,获得积分20
17秒前
卷毛兔发布了新的文献求助50
18秒前
19秒前
赘婿应助邓统浩采纳,获得10
21秒前
21秒前
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得30
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4961218
求助须知:如何正确求助?哪些是违规求助? 4221690
关于积分的说明 13148036
捐赠科研通 4005575
什么是DOI,文献DOI怎么找? 2192278
邀请新用户注册赠送积分活动 1206156
关于科研通互助平台的介绍 1117434