Drug-target and Drug-disease Association Prediction based on Drug-target-disease Network and Multi-task Learning

计算机科学 自编码 人工智能 药品 GSM演进的增强数据速率 药物靶点 任务(项目管理) 联想(心理学) 机器学习 图形 特征(语言学) 特征学习 多任务学习 模式识别(心理学) 深度学习 理论计算机科学 医学 认识论 精神科 心理学 哲学 药理学 经济 管理 语言学
作者
Binyu Wang,Yunhao Zhang,Hongyan Ye,Lianlian Wu,Song He,Xiaochen Bo,Zhongnan Zhang
标识
DOI:10.1109/bibm58861.2023.10386051
摘要

Traditional drug-target and drug-disease associations prediction tasks have been performed independently, without fully exploiting the relationships between drugs and various other entities, leading to inaccurate predictions. With the emergence of large-scale heterogeneous biological networks, multi-task learning can effectively enhance the accuracy of association prediction based on the associations between entities. In this study, we propose a multi-task learning framework named DTD-MTL to predict drug-target and drug-disease associations simultaneously. Firstly, it utilizes a multi-layer relational graph convolutional network (RGCN) to learn the features of each node in the drug-target-disease network. Subsequently, it obtains the initial feature of an edge by concatenating the features of the two nodes on the same edge. To coordinate different prediction tasks, drug features are shared among different tasks. Afterwards, the autoencoder (AE) is used to extract features from different types of edges. In order to make the learned edge features more suitable for different prediction tasks, the distance covariance (DC) is utilized to eliminate the specificity between different types of edges, thereby leveraging the relationships between different tasks more effectively. Finally, the drug-target and drug-disease associations predictions are achieved based on the edge features extracted by the AE. Experimental results on a widely-used dataset show that DTD-MTL outperforms the state-of-the-art methods in the prediction task of drug-target and drug-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲁彦华完成签到,获得积分20
1秒前
1秒前
Jason发布了新的文献求助10
3秒前
3秒前
Loong完成签到,获得积分10
4秒前
科研通AI2S应助sigla采纳,获得10
4秒前
4秒前
4秒前
卷儿完成签到,获得积分10
5秒前
5秒前
大钱完成签到,获得积分10
6秒前
6秒前
卞斌锋完成签到 ,获得积分20
6秒前
6秒前
6秒前
6秒前
6秒前
我是老大应助淡淡的新之采纳,获得10
7秒前
慕青应助CX采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
hanchangcun发布了新的文献求助10
9秒前
Xianhe完成签到,获得积分10
9秒前
summer发布了新的文献求助10
9秒前
可可发布了新的文献求助10
10秒前
10秒前
今后应助kiwiii采纳,获得10
10秒前
假唱卡带完成签到,获得积分10
10秒前
李青秀发布了新的文献求助20
10秒前
garey发布了新的文献求助10
11秒前
11秒前
Leeyee发布了新的文献求助10
11秒前
段红琼发布了新的文献求助30
11秒前
卷儿发布了新的文献求助10
11秒前
12秒前
Cici发布了新的文献求助10
12秒前
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970120
求助须知:如何正确求助?哪些是违规求助? 3514810
关于积分的说明 11176124
捐赠科研通 3250136
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875647
科研通“疑难数据库(出版商)”最低求助积分说明 804964