FaultSSL: Seismic fault detection via semisupervised learning

计算机科学 一致性(知识库) 一般化 人工智能 故障检测与隔离 领域(数学) 代理(统计) 人工神经网络 过程(计算) 数据挖掘 机器学习 模式识别(心理学) 数学 执行机构 数学分析 纯数学 操作系统
作者
Yimin Dou,Kewen Li,Minghui Dong,Yuan Xiao
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (3): M79-M91 被引量:4
标识
DOI:10.1190/geo2023-0550.1
摘要

The prevailing methodology in data-driven fault detection leverages synthetic data for training neural networks. However, it grapples with challenges when it comes to generalization in surveys exhibiting complex structures. To enhance the generalization of models trained on limited synthetic data sets to a broader range of real-world data, we introduce FaultSSL, a semisupervised fault detection framework. This method is based on the classical mean teacher structure, in which its supervised part uses synthetic data and a few 2D labels. The unsupervised component relies on two meticulously devised proxy tasks, allowing it to incorporate vast, unlabeled field data into the training process. The two proxy tasks are panning consistency (PNC) and patching consistency (PTC). PNC emphasizes feature consistency in overlapping regions between two adjacent views in predicting the model. This allows for the extension of 2D slice labels to the global seismic volume. PTC emphasizes the spatially consistent nature of faults. It ensures that the predictions for the seismic data, whether made on the entire volume or individual patches, exhibit coherence without any noticeable artifacts at the patch boundaries. Although the two proxy tasks serve different objectives, they uniformly contribute to the enhancement of performance. Experiments showcase the exceptional performance of FaultSSL. In surveys wherein other mainstream methods fail to deliver, we present reliable, continuous, and clear detection results. FaultSSL reveals a promising approach for incorporating large volumes of field data into the training and promoting model generalization across broader surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩钰小宝发布了新的文献求助10
刚刚
隐形曼青应助克林采纳,获得10
刚刚
TARGET完成签到,获得积分10
刚刚
2秒前
HEROTREE发布了新的文献求助10
4秒前
山吱小猪完成签到,获得积分10
5秒前
在水一方应助May采纳,获得10
7秒前
9秒前
浅眸流年发布了新的文献求助10
9秒前
10秒前
奇拉维特完成签到 ,获得积分10
11秒前
11秒前
隐形曼青应助李小牙采纳,获得10
11秒前
想大大只发布了新的文献求助30
11秒前
winifred完成签到 ,获得积分10
12秒前
典雅的俊驰应助莫愁采纳,获得30
12秒前
科研通AI2S应助甜甜的语风采纳,获得10
13秒前
14秒前
Hello应助SilentRP采纳,获得10
15秒前
15秒前
高高的高丽完成签到,获得积分10
16秒前
cancan发布了新的文献求助10
17秒前
17秒前
呼啦呼啦圈完成签到,获得积分20
17秒前
19秒前
怦怦应助机智的誉采纳,获得10
19秒前
克林完成签到,获得积分10
20秒前
Ganlou应助biu我你开心吗采纳,获得10
20秒前
科目三应助biu我你开心吗采纳,获得10
21秒前
21秒前
21秒前
我是老大应助安静的绿海采纳,获得10
21秒前
22秒前
CodeCraft应助Dou采纳,获得10
22秒前
雪碧没气完成签到,获得积分10
23秒前
mouse_pear发布了新的文献求助10
24秒前
小鱼鱼Fish发布了新的文献求助20
24秒前
笨小孩完成签到,获得积分10
24秒前
Mei发布了新的文献求助10
24秒前
研友_LX62KZ完成签到,获得积分20
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313270
求助须知:如何正确求助?哪些是违规求助? 2945680
关于积分的说明 8526586
捐赠科研通 2621440
什么是DOI,文献DOI怎么找? 1433542
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650568