FaultSSL: Seismic fault detection via semisupervised learning

计算机科学 一致性(知识库) 一般化 人工智能 故障检测与隔离 领域(数学) 代理(统计) 人工神经网络 过程(计算) 数据挖掘 机器学习 模式识别(心理学) 数学 执行机构 数学分析 纯数学 操作系统
作者
Yimin Dou,Kewen Li,Minghui Dong,Yuan Xiao
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (3): M79-M91 被引量:4
标识
DOI:10.1190/geo2023-0550.1
摘要

The prevailing methodology in data-driven fault detection leverages synthetic data for training neural networks. However, it grapples with challenges when it comes to generalization in surveys exhibiting complex structures. To enhance the generalization of models trained on limited synthetic data sets to a broader range of real-world data, we introduce FaultSSL, a semisupervised fault detection framework. This method is based on the classical mean teacher structure, in which its supervised part uses synthetic data and a few 2D labels. The unsupervised component relies on two meticulously devised proxy tasks, allowing it to incorporate vast, unlabeled field data into the training process. The two proxy tasks are panning consistency (PNC) and patching consistency (PTC). PNC emphasizes feature consistency in overlapping regions between two adjacent views in predicting the model. This allows for the extension of 2D slice labels to the global seismic volume. PTC emphasizes the spatially consistent nature of faults. It ensures that the predictions for the seismic data, whether made on the entire volume or individual patches, exhibit coherence without any noticeable artifacts at the patch boundaries. Although the two proxy tasks serve different objectives, they uniformly contribute to the enhancement of performance. Experiments showcase the exceptional performance of FaultSSL. In surveys wherein other mainstream methods fail to deliver, we present reliable, continuous, and clear detection results. FaultSSL reveals a promising approach for incorporating large volumes of field data into the training and promoting model generalization across broader surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助chen采纳,获得10
刚刚
Brot_12发布了新的文献求助10
刚刚
1秒前
发呆小蜗发布了新的文献求助20
1秒前
1秒前
2秒前
2秒前
徐洋发布了新的文献求助10
3秒前
4秒前
4秒前
Green完成签到,获得积分10
4秒前
q792309106发布了新的文献求助10
4秒前
5秒前
5秒前
最佳发布了新的文献求助10
6秒前
6秒前
JaneChen发布了新的文献求助10
7秒前
7秒前
bofu发布了新的文献求助10
7秒前
付榆峰发布了新的文献求助10
7秒前
lalala发布了新的文献求助10
8秒前
di关闭了di文献求助
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
water应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
water应助科研通管家采纳,获得10
9秒前
ll应助科研通管家采纳,获得10
9秒前
9秒前
赘婿应助科研通管家采纳,获得30
9秒前
11秒前
jyyg发布了新的文献求助10
11秒前
11秒前
12秒前
小DRA完成签到,获得积分10
12秒前
13秒前
13秒前
chen发布了新的文献求助10
13秒前
bofu发布了新的文献求助10
13秒前
di关闭了di文献求助
13秒前
ZZ发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163