Texture Characterization and Classification of Polarized Images Based on Multi-angle Orthogonal Difference

数学 极化(电化学) 直方图 局部二进制模式 像素 二进制数 光学 模式识别(心理学) 人工智能 图像(数学) 计算机科学 物理 算术 物理化学 化学
作者
Jin Duan,Suxin Mo,Qiang Fu,Xiaojiao Jiang,Wenxue Zhang,Meiling Gao
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:31 (26): 44455-44455 被引量:1
标识
DOI:10.1364/oe.503632
摘要

The Local Binary Pattern (LBP) and its variants are capable of extracting image texture and have been successfully applied to classification. However, LBP has not been used to extract and describe the texture of polarized images, and simple LBP cannot characterize the polarized texture information from different polarizations of angles. In order to solve these problems, we propose a new multi-angle orthogonal difference polarization image texture descriptor (MODP_ITD) by analyzing the relationship between the difference of orthogonal difference polarization images from different angles and the pixel intensity distribution in the local neighborhood of images from different angles. The MODP_ITD consists of three patterns: multi-angle polarization orthogonal difference local binary pattern (MODP_LBP), multi-angle polarization orthogonal difference local sampling point principal component sequence pattern (MODP_LPCSP) and multi-angle orthogonal difference polarization local difference binary pattern (MODP_LDBP). The MODP_LBP extracts local corresponding texture characteristics of polarized orthogonal difference images from multiple angles. The MODP_LPCSP sorts the principal component order of each angle orthogonal difference local sampling point. The MODP LDBP extracts the local difference characteristics between different angles by constructing a new polarized image. Then, the frequency histograms of MODP_LBP, MOD_LPCSP ,and MODP_LDBP are cascaded to generate MODP_ITD, so as to distinguish local neighborhoods. By using vertical and parallel polarization and unpolarized light active illumination, combined with the measurements at three different detection zenith angles, we constructed a polarization texture image database. A substantial number of experimental results on the self-built database show that our proposed MODP_ITD can represent the detailed information of polarization images texture. In addition, compared with the existing LBP methods, The MODP_ITD has a competitive advantage in classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
照亮完成签到 ,获得积分10
4秒前
cxz发布了新的文献求助10
4秒前
说不得大师完成签到 ,获得积分10
4秒前
6秒前
还在路上完成签到,获得积分20
6秒前
莫茹完成签到 ,获得积分10
6秒前
努力熊熊完成签到,获得积分10
7秒前
多多完成签到,获得积分10
8秒前
路越发布了新的文献求助10
9秒前
风清扬发布了新的文献求助30
9秒前
无花果应助leo采纳,获得10
10秒前
10秒前
11秒前
大模型应助tylerli采纳,获得10
13秒前
爆米花应助西高所采纳,获得10
13秒前
天天快乐应助我要读博士采纳,获得10
14秒前
堀川发布了新的文献求助10
14秒前
小鱼同学完成签到,获得积分10
15秒前
依侬完成签到,获得积分10
15秒前
大模型应助余浩宇采纳,获得10
15秒前
科目三应助花海采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
Tourist应助科研通管家采纳,获得150
17秒前
Ranglin应助科研通管家采纳,获得10
17秒前
17秒前
浮游应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
彭于彦祖应助科研通管家采纳,获得150
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
蛇從革应助科研通管家采纳,获得150
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132036
求助须知:如何正确求助?哪些是违规求助? 4333560
关于积分的说明 13501173
捐赠科研通 4170621
什么是DOI,文献DOI怎么找? 2286445
邀请新用户注册赠送积分活动 1287303
关于科研通互助平台的介绍 1228340