亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Texture Characterization and Classification of Polarized Images Based on Multi-angle Orthogonal Difference

数学 极化(电化学) 直方图 局部二进制模式 像素 二进制数 光学 模式识别(心理学) 人工智能 图像(数学) 计算机科学 物理 算术 物理化学 化学
作者
Jin Duan,Suxin Mo,Qiang Fu,Xiaojiao Jiang,Wenxue Zhang,Meiling Gao
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:31 (26): 44455-44455 被引量:1
标识
DOI:10.1364/oe.503632
摘要

The Local Binary Pattern (LBP) and its variants are capable of extracting image texture and have been successfully applied to classification. However, LBP has not been used to extract and describe the texture of polarized images, and simple LBP cannot characterize the polarized texture information from different polarizations of angles. In order to solve these problems, we propose a new multi-angle orthogonal difference polarization image texture descriptor (MODP_ITD) by analyzing the relationship between the difference of orthogonal difference polarization images from different angles and the pixel intensity distribution in the local neighborhood of images from different angles. The MODP_ITD consists of three patterns: multi-angle polarization orthogonal difference local binary pattern (MODP_LBP), multi-angle polarization orthogonal difference local sampling point principal component sequence pattern (MODP_LPCSP) and multi-angle orthogonal difference polarization local difference binary pattern (MODP_LDBP). The MODP_LBP extracts local corresponding texture characteristics of polarized orthogonal difference images from multiple angles. The MODP_LPCSP sorts the principal component order of each angle orthogonal difference local sampling point. The MODP LDBP extracts the local difference characteristics between different angles by constructing a new polarized image. Then, the frequency histograms of MODP_LBP, MOD_LPCSP ,and MODP_LDBP are cascaded to generate MODP_ITD, so as to distinguish local neighborhoods. By using vertical and parallel polarization and unpolarized light active illumination, combined with the measurements at three different detection zenith angles, we constructed a polarization texture image database. A substantial number of experimental results on the self-built database show that our proposed MODP_ITD can represent the detailed information of polarization images texture. In addition, compared with the existing LBP methods, The MODP_ITD has a competitive advantage in classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷风完成签到 ,获得积分10
4秒前
徐per爱豆完成签到 ,获得积分10
5秒前
今后应助阡陌殇殇采纳,获得10
7秒前
10秒前
13秒前
14秒前
Orange应助happy贼王采纳,获得10
17秒前
RR发布了新的文献求助10
18秒前
HUOZHUANGCHAO完成签到,获得积分10
20秒前
21秒前
Achu发布了新的文献求助10
26秒前
小葛完成签到,获得积分10
28秒前
28秒前
秋殇浅寞完成签到,获得积分10
30秒前
秋殇浅寞发布了新的文献求助30
33秒前
Owen应助月白lala采纳,获得10
35秒前
FashionBoy应助Juniorrr采纳,获得20
37秒前
37秒前
拓跋半雪发布了新的文献求助30
41秒前
happy贼王发布了新的文献求助10
41秒前
lsl完成签到 ,获得积分10
45秒前
46秒前
48秒前
51秒前
小丿丫丿丫完成签到 ,获得积分10
51秒前
happy贼王发布了新的文献求助10
54秒前
55秒前
斯文败类应助RR采纳,获得10
57秒前
不说再见发布了新的文献求助10
59秒前
happy贼王完成签到,获得积分10
59秒前
领导范儿应助嘚嘚采纳,获得10
1分钟前
自由的中蓝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
拓跋半雪完成签到,获得积分10
1分钟前
yfq1018发布了新的文献求助10
1分钟前
zz发布了新的文献求助10
1分钟前
李梓航完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
kkk发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253515
求助须知:如何正确求助?哪些是违规求助? 4416821
关于积分的说明 13750562
捐赠科研通 4289289
什么是DOI,文献DOI怎么找? 2353359
邀请新用户注册赠送积分活动 1350077
关于科研通互助平台的介绍 1309966