亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Texture Characterization and Classification of Polarized Images Based on Multi-angle Orthogonal Difference

数学 极化(电化学) 直方图 局部二进制模式 像素 二进制数 光学 模式识别(心理学) 人工智能 图像(数学) 计算机科学 物理 算术 物理化学 化学
作者
Jin Duan,Suxin Mo,Qiang Fu,Xiaojiao Jiang,Wenxue Zhang,Meiling Gao
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:31 (26): 44455-44455 被引量:1
标识
DOI:10.1364/oe.503632
摘要

The Local Binary Pattern (LBP) and its variants are capable of extracting image texture and have been successfully applied to classification. However, LBP has not been used to extract and describe the texture of polarized images, and simple LBP cannot characterize the polarized texture information from different polarizations of angles. In order to solve these problems, we propose a new multi-angle orthogonal difference polarization image texture descriptor (MODP_ITD) by analyzing the relationship between the difference of orthogonal difference polarization images from different angles and the pixel intensity distribution in the local neighborhood of images from different angles. The MODP_ITD consists of three patterns: multi-angle polarization orthogonal difference local binary pattern (MODP_LBP), multi-angle polarization orthogonal difference local sampling point principal component sequence pattern (MODP_LPCSP) and multi-angle orthogonal difference polarization local difference binary pattern (MODP_LDBP). The MODP_LBP extracts local corresponding texture characteristics of polarized orthogonal difference images from multiple angles. The MODP_LPCSP sorts the principal component order of each angle orthogonal difference local sampling point. The MODP LDBP extracts the local difference characteristics between different angles by constructing a new polarized image. Then, the frequency histograms of MODP_LBP, MOD_LPCSP ,and MODP_LDBP are cascaded to generate MODP_ITD, so as to distinguish local neighborhoods. By using vertical and parallel polarization and unpolarized light active illumination, combined with the measurements at three different detection zenith angles, we constructed a polarization texture image database. A substantial number of experimental results on the self-built database show that our proposed MODP_ITD can represent the detailed information of polarization images texture. In addition, compared with the existing LBP methods, The MODP_ITD has a competitive advantage in classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
cc完成签到,获得积分20
4秒前
情怀应助尊敬的芷卉采纳,获得10
10秒前
研友_X89o6n完成签到,获得积分10
11秒前
aa121599完成签到,获得积分20
12秒前
24秒前
Owen应助科研通管家采纳,获得10
25秒前
朴素绿蝶发布了新的文献求助10
30秒前
痴痴的噜完成签到,获得积分10
33秒前
江姜酱先生完成签到,获得积分10
42秒前
搞科研的小李同学完成签到 ,获得积分10
48秒前
科研通AI6应助朴素绿蝶采纳,获得10
49秒前
可爱的函函应助hulahula采纳,获得10
50秒前
fabius0351完成签到 ,获得积分10
54秒前
李健应助阿米尔盼盼采纳,获得10
1分钟前
1分钟前
hulahula发布了新的文献求助10
1分钟前
1分钟前
1分钟前
长度2到发布了新的文献求助10
1分钟前
xuan发布了新的文献求助10
1分钟前
长度2到完成签到,获得积分10
1分钟前
1分钟前
xtheuv发布了新的文献求助10
1分钟前
Hello应助hulahula采纳,获得10
1分钟前
嘻嘻哈哈完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助xtheuv采纳,获得10
1分钟前
drirshad完成签到,获得积分10
1分钟前
芜湖发布了新的文献求助10
1分钟前
2分钟前
冷静新烟完成签到,获得积分10
2分钟前
芜湖完成签到,获得积分10
2分钟前
111发布了新的文献求助10
2分钟前
2分钟前
wanci应助111采纳,获得10
2分钟前
高级牛马完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220819
求助须知:如何正确求助?哪些是违规求助? 4394077
关于积分的说明 13680135
捐赠科研通 4257061
什么是DOI,文献DOI怎么找? 2335959
邀请新用户注册赠送积分活动 1333553
关于科研通互助平台的介绍 1287992