Texture Characterization and Classification of Polarized Images Based on Multi-angle Orthogonal Difference

数学 极化(电化学) 直方图 局部二进制模式 像素 二进制数 光学 模式识别(心理学) 人工智能 图像(数学) 计算机科学 物理 化学 算术 物理化学
作者
Jin Duan,Suxin Mo,Qiang Fu,Xiaojiao Jiang,Wenxue Zhang,Meiling Gao
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (26): 44455-44455 被引量:1
标识
DOI:10.1364/oe.503632
摘要

The Local Binary Pattern (LBP) and its variants are capable of extracting image texture and have been successfully applied to classification. However, LBP has not been used to extract and describe the texture of polarized images, and simple LBP cannot characterize the polarized texture information from different polarizations of angles. In order to solve these problems, we propose a new multi-angle orthogonal difference polarization image texture descriptor (MODP_ITD) by analyzing the relationship between the difference of orthogonal difference polarization images from different angles and the pixel intensity distribution in the local neighborhood of images from different angles. The MODP_ITD consists of three patterns: multi-angle polarization orthogonal difference local binary pattern (MODP_LBP), multi-angle polarization orthogonal difference local sampling point principal component sequence pattern (MODP_LPCSP) and multi-angle orthogonal difference polarization local difference binary pattern (MODP_LDBP). The MODP_LBP extracts local corresponding texture characteristics of polarized orthogonal difference images from multiple angles. The MODP_LPCSP sorts the principal component order of each angle orthogonal difference local sampling point. The MODP LDBP extracts the local difference characteristics between different angles by constructing a new polarized image. Then, the frequency histograms of MODP_LBP, MOD_LPCSP ,and MODP_LDBP are cascaded to generate MODP_ITD, so as to distinguish local neighborhoods. By using vertical and parallel polarization and unpolarized light active illumination, combined with the measurements at three different detection zenith angles, we constructed a polarization texture image database. A substantial number of experimental results on the self-built database show that our proposed MODP_ITD can represent the detailed information of polarization images texture. In addition, compared with the existing LBP methods, The MODP_ITD has a competitive advantage in classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dain完成签到,获得积分10
刚刚
1秒前
积极冰淇淋完成签到,获得积分10
1秒前
碧蓝丹烟完成签到 ,获得积分10
1秒前
1秒前
爱吃姜的面条完成签到,获得积分10
2秒前
呆呆子发布了新的文献求助10
3秒前
SYLH应助盛夏采纳,获得10
3秒前
科研通AI5应助机智达采纳,获得10
3秒前
莫之白发布了新的文献求助10
3秒前
桐桐应助KK采纳,获得10
3秒前
大大泡泡完成签到,获得积分10
4秒前
ML完成签到,获得积分10
5秒前
5秒前
打打应助自转无风采纳,获得10
5秒前
slsdianzi完成签到,获得积分10
5秒前
零相似完成签到,获得积分10
5秒前
学术小天才完成签到,获得积分10
6秒前
小刺完成签到,获得积分10
8秒前
SY完成签到,获得积分10
9秒前
朴素的黄豆完成签到,获得积分10
10秒前
10秒前
Asahi完成签到 ,获得积分10
10秒前
罗_完成签到,获得积分0
10秒前
11秒前
机智的天曼完成签到,获得积分10
11秒前
gt完成签到 ,获得积分10
11秒前
岩新完成签到 ,获得积分10
11秒前
羽毛发布了新的文献求助10
11秒前
11秒前
XM完成签到,获得积分10
12秒前
Dawn完成签到 ,获得积分10
12秒前
虚幻的莞完成签到,获得积分10
12秒前
苗条绝义应助个性莺采纳,获得10
13秒前
13秒前
13秒前
lemon完成签到 ,获得积分10
13秒前
13秒前
pl完成签到 ,获得积分10
14秒前
SciGPT应助azai采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910