Asset Pricing: Cross-Section Predictability

可预测性 文件夹 水准点(测量) 计量经济学 夏普比率 经济 证券交易所 数学金融学 计算机科学 资本资产定价模型 金融经济学 精算学 数学 统计 财务 地理 大地测量学
作者
Paolo Zaffaroni,Guofu Zhou
标识
DOI:10.1093/acrefore/9780190625979.013.870
摘要

A fundamental question in finance is the study of why different assets have different expected returns, which is intricately linked to the issue of cross-section prediction in the sense of addressing the question “What explains the cross section of expected returns?” There is vast literature on this topic. There are state-of-the-art methods used to forecast the cross section of stock returns with firm characteristics predictors, and the same methods can be applied to other asset classes, such as corporate bonds and foreign exchange rates, and to managed portfolios such mutual and hedge funds. First, there are the traditional ordinary least squares and weighted least squares methods, as well as the recently developed various machine learning approaches such as neutral networks and genetic programming. These are the main methods used today in applications. There are three measures that assess how the various methods perform. The first is the Sharpe ratio of a long–short portfolio that longs the assets with the highest predicted return and shorts those with the lowest. This measure provides the economic value for one method versus another. The second measure is an out-of-sample R 2 that evaluates how the forecasts perform relative to a natural benchmark that is the cross-section mean. This is important as any method that fails to outperform the benchmark is questionable. The third measure is how well the predicted returns explain the realized ones. This provides an overall error assessment cross all the stocks. Factor models are another tool used to understand cross-section predictability. This sheds light on whether the predictability is due to mispricing or risk exposure. There are three ways to consider these models: First, we can consider how to test traditional factor models and estimate the associated risk premia, where the factors are specified ex ante. Second, we can analyze similar problems for latent factor models. Finally, going beyond the traditional setup, we can consider recent studies on asset-specific risks. This analysis provides the framework to understand the economic driving forces of predictability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静白翠发布了新的文献求助10
刚刚
刚刚
灿烂千阳发布了新的文献求助10
刚刚
彭静琳发布了新的文献求助10
1秒前
iNk应助瞬间de回眸采纳,获得10
1秒前
爆米花应助Kuhaku采纳,获得20
1秒前
宋佳发布了新的文献求助10
1秒前
1秒前
1秒前
林钟望完成签到,获得积分10
1秒前
2秒前
2秒前
lllisa发布了新的文献求助10
2秒前
Magical发布了新的文献求助10
2秒前
JHK完成签到,获得积分20
2秒前
思源应助Scinature采纳,获得10
2秒前
3秒前
陶醉小笼包完成签到 ,获得积分10
3秒前
3秒前
小包子发布了新的文献求助20
3秒前
自由的夜天完成签到,获得积分20
4秒前
duoduo发布了新的文献求助10
5秒前
5秒前
JHK发布了新的文献求助10
5秒前
23333完成签到,获得积分10
5秒前
Liens发布了新的文献求助10
5秒前
Honahlee发布了新的文献求助10
6秒前
6秒前
HUANG_黄完成签到,获得积分10
6秒前
SS发布了新的文献求助30
6秒前
娇气的妙之完成签到,获得积分10
7秒前
NexusExplorer应助JY采纳,获得10
7秒前
李蕤蕤完成签到,获得积分10
7秒前
8秒前
8秒前
Lucas应助虎啊虎啊采纳,获得10
8秒前
8秒前
8秒前
glacierflame完成签到,获得积分10
9秒前
Morli完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836