Asset Pricing: Cross-Section Predictability

可预测性 文件夹 水准点(测量) 计量经济学 夏普比率 经济 证券交易所 数学金融学 计算机科学 资本资产定价模型 金融经济学 精算学 数学 统计 财务 地理 大地测量学
作者
Paolo Zaffaroni,Guofu Zhou
标识
DOI:10.1093/acrefore/9780190625979.013.870
摘要

A fundamental question in finance is the study of why different assets have different expected returns, which is intricately linked to the issue of cross-section prediction in the sense of addressing the question “What explains the cross section of expected returns?” There is vast literature on this topic. There are state-of-the-art methods used to forecast the cross section of stock returns with firm characteristics predictors, and the same methods can be applied to other asset classes, such as corporate bonds and foreign exchange rates, and to managed portfolios such mutual and hedge funds. First, there are the traditional ordinary least squares and weighted least squares methods, as well as the recently developed various machine learning approaches such as neutral networks and genetic programming. These are the main methods used today in applications. There are three measures that assess how the various methods perform. The first is the Sharpe ratio of a long–short portfolio that longs the assets with the highest predicted return and shorts those with the lowest. This measure provides the economic value for one method versus another. The second measure is an out-of-sample R 2 that evaluates how the forecasts perform relative to a natural benchmark that is the cross-section mean. This is important as any method that fails to outperform the benchmark is questionable. The third measure is how well the predicted returns explain the realized ones. This provides an overall error assessment cross all the stocks. Factor models are another tool used to understand cross-section predictability. This sheds light on whether the predictability is due to mispricing or risk exposure. There are three ways to consider these models: First, we can consider how to test traditional factor models and estimate the associated risk premia, where the factors are specified ex ante. Second, we can analyze similar problems for latent factor models. Finally, going beyond the traditional setup, we can consider recent studies on asset-specific risks. This analysis provides the framework to understand the economic driving forces of predictability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助皮崇知采纳,获得10
1秒前
2秒前
lifan发布了新的文献求助10
3秒前
Zz发布了新的文献求助10
4秒前
前行者完成签到,获得积分10
5秒前
6秒前
皮崇知发布了新的文献求助10
11秒前
13秒前
淡定的镜子完成签到,获得积分10
13秒前
CyberHamster完成签到,获得积分10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
15秒前
地表飞猪应助科研通管家采纳,获得10
15秒前
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
15秒前
小蘑菇应助科研通管家采纳,获得20
15秒前
汉堡包应助念姬采纳,获得10
17秒前
MMMM完成签到,获得积分10
17秒前
Ysj发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
sunlanglang发布了新的文献求助10
20秒前
23发布了新的文献求助10
21秒前
天天快乐应助bjf555采纳,获得10
22秒前
ricedoctor发布了新的文献求助10
23秒前
29秒前
beta完成签到,获得积分10
29秒前
iNk应助qiang采纳,获得20
31秒前
srf0602.发布了新的文献求助10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450