Asset Pricing: Cross-Section Predictability

可预测性 文件夹 水准点(测量) 计量经济学 夏普比率 经济 证券交易所 数学金融学 计算机科学 资本资产定价模型 金融经济学 精算学 数学 统计 财务 地理 大地测量学
作者
Paolo Zaffaroni,Guofu Zhou
标识
DOI:10.1093/acrefore/9780190625979.013.870
摘要

A fundamental question in finance is the study of why different assets have different expected returns, which is intricately linked to the issue of cross-section prediction in the sense of addressing the question “What explains the cross section of expected returns?” There is vast literature on this topic. There are state-of-the-art methods used to forecast the cross section of stock returns with firm characteristics predictors, and the same methods can be applied to other asset classes, such as corporate bonds and foreign exchange rates, and to managed portfolios such mutual and hedge funds. First, there are the traditional ordinary least squares and weighted least squares methods, as well as the recently developed various machine learning approaches such as neutral networks and genetic programming. These are the main methods used today in applications. There are three measures that assess how the various methods perform. The first is the Sharpe ratio of a long–short portfolio that longs the assets with the highest predicted return and shorts those with the lowest. This measure provides the economic value for one method versus another. The second measure is an out-of-sample R 2 that evaluates how the forecasts perform relative to a natural benchmark that is the cross-section mean. This is important as any method that fails to outperform the benchmark is questionable. The third measure is how well the predicted returns explain the realized ones. This provides an overall error assessment cross all the stocks. Factor models are another tool used to understand cross-section predictability. This sheds light on whether the predictability is due to mispricing or risk exposure. There are three ways to consider these models: First, we can consider how to test traditional factor models and estimate the associated risk premia, where the factors are specified ex ante. Second, we can analyze similar problems for latent factor models. Finally, going beyond the traditional setup, we can consider recent studies on asset-specific risks. This analysis provides the framework to understand the economic driving forces of predictability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到 ,获得积分10
1秒前
顾矜应助乖猫要努力采纳,获得10
2秒前
传奇3应助yw采纳,获得10
2秒前
刘轩雨发布了新的文献求助10
2秒前
CodeCraft应助咕咕咕采纳,获得10
2秒前
SciGPT应助Till采纳,获得10
3秒前
皇甫锾铬发布了新的文献求助10
3秒前
3秒前
4秒前
猪猪hero应助Levy采纳,获得10
4秒前
大模型应助Zoe采纳,获得30
4秒前
唐三发布了新的文献求助10
4秒前
LIUAiwei完成签到,获得积分10
4秒前
瓅芩发布了新的文献求助150
4秒前
风清扬应助supertkeb采纳,获得30
4秒前
英俊的铭应助Vanessa采纳,获得10
4秒前
充电宝应助小郭子采纳,获得10
5秒前
充电宝应助栗子采纳,获得10
5秒前
个性的饼干完成签到,获得积分10
5秒前
5秒前
rss完成签到,获得积分10
6秒前
桌子不齐完成签到,获得积分10
6秒前
6秒前
galioo3000发布了新的文献求助10
6秒前
xmy发布了新的文献求助10
7秒前
斯文败类应助wang采纳,获得10
8秒前
人文发布了新的文献求助100
8秒前
科研通AI6应助路人甲采纳,获得10
8秒前
8秒前
小七完成签到,获得积分10
8秒前
妞妞发布了新的文献求助10
9秒前
9秒前
Inspiring发布了新的文献求助10
10秒前
大个应助钮小童采纳,获得10
10秒前
10秒前
科研通AI2S应助Pendulium采纳,获得10
11秒前
11秒前
DIDI完成签到,获得积分10
11秒前
12秒前
TP完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721