Asset Pricing: Cross-Section Predictability

可预测性 文件夹 水准点(测量) 计量经济学 夏普比率 经济 证券交易所 数学金融学 计算机科学 资本资产定价模型 金融经济学 精算学 数学 统计 财务 地理 大地测量学
作者
Paolo Zaffaroni,Guofu Zhou
标识
DOI:10.1093/acrefore/9780190625979.013.870
摘要

A fundamental question in finance is the study of why different assets have different expected returns, which is intricately linked to the issue of cross-section prediction in the sense of addressing the question “What explains the cross section of expected returns?” There is vast literature on this topic. There are state-of-the-art methods used to forecast the cross section of stock returns with firm characteristics predictors, and the same methods can be applied to other asset classes, such as corporate bonds and foreign exchange rates, and to managed portfolios such mutual and hedge funds. First, there are the traditional ordinary least squares and weighted least squares methods, as well as the recently developed various machine learning approaches such as neutral networks and genetic programming. These are the main methods used today in applications. There are three measures that assess how the various methods perform. The first is the Sharpe ratio of a long–short portfolio that longs the assets with the highest predicted return and shorts those with the lowest. This measure provides the economic value for one method versus another. The second measure is an out-of-sample R 2 that evaluates how the forecasts perform relative to a natural benchmark that is the cross-section mean. This is important as any method that fails to outperform the benchmark is questionable. The third measure is how well the predicted returns explain the realized ones. This provides an overall error assessment cross all the stocks. Factor models are another tool used to understand cross-section predictability. This sheds light on whether the predictability is due to mispricing or risk exposure. There are three ways to consider these models: First, we can consider how to test traditional factor models and estimate the associated risk premia, where the factors are specified ex ante. Second, we can analyze similar problems for latent factor models. Finally, going beyond the traditional setup, we can consider recent studies on asset-specific risks. This analysis provides the framework to understand the economic driving forces of predictability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
卷aaaa完成签到,获得积分10
1秒前
活力明雪发布了新的文献求助10
1秒前
定烜完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助泡泡老爷车采纳,获得10
2秒前
2秒前
yangyanshu完成签到,获得积分10
2秒前
哈喽发布了新的文献求助10
2秒前
今后应助神勇的萱萱采纳,获得10
2秒前
xiaorui完成签到,获得积分10
2秒前
搞怪的映菡完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
娜娜liuna完成签到,获得积分10
5秒前
科研通AI5应助时候hi采纳,获得10
5秒前
Dun发布了新的文献求助10
7秒前
7秒前
Ye发布了新的文献求助10
8秒前
好困发布了新的文献求助10
8秒前
好好学习发布了新的文献求助10
8秒前
Jasper应助崔某采纳,获得10
10秒前
10秒前
10秒前
科研通AI2S应助皮卡丘采纳,获得10
12秒前
12秒前
FashionBoy应助单纯的石头采纳,获得10
13秒前
大汤圆子发布了新的文献求助10
13秒前
14秒前
阿杰发布了新的文献求助10
14秒前
酷酷筝发布了新的文献求助10
15秒前
opeinnai应助宫城百事顺采纳,获得20
16秒前
犹豫灵凡发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
氕1完成签到,获得积分10
16秒前
kxy0311完成签到 ,获得积分10
17秒前
coldspringhao完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954479
求助须知:如何正确求助?哪些是违规求助? 4216866
关于积分的说明 13120975
捐赠科研通 3999005
什么是DOI,文献DOI怎么找? 2188594
邀请新用户注册赠送积分活动 1203758
关于科研通互助平台的介绍 1116092