Asset Pricing: Cross-Section Predictability

可预测性 文件夹 水准点(测量) 计量经济学 夏普比率 经济 证券交易所 数学金融学 计算机科学 资本资产定价模型 金融经济学 精算学 数学 统计 财务 地理 大地测量学
作者
Paolo Zaffaroni,Guofu Zhou
标识
DOI:10.1093/acrefore/9780190625979.013.870
摘要

A fundamental question in finance is the study of why different assets have different expected returns, which is intricately linked to the issue of cross-section prediction in the sense of addressing the question “What explains the cross section of expected returns?” There is vast literature on this topic. There are state-of-the-art methods used to forecast the cross section of stock returns with firm characteristics predictors, and the same methods can be applied to other asset classes, such as corporate bonds and foreign exchange rates, and to managed portfolios such mutual and hedge funds. First, there are the traditional ordinary least squares and weighted least squares methods, as well as the recently developed various machine learning approaches such as neutral networks and genetic programming. These are the main methods used today in applications. There are three measures that assess how the various methods perform. The first is the Sharpe ratio of a long–short portfolio that longs the assets with the highest predicted return and shorts those with the lowest. This measure provides the economic value for one method versus another. The second measure is an out-of-sample R 2 that evaluates how the forecasts perform relative to a natural benchmark that is the cross-section mean. This is important as any method that fails to outperform the benchmark is questionable. The third measure is how well the predicted returns explain the realized ones. This provides an overall error assessment cross all the stocks. Factor models are another tool used to understand cross-section predictability. This sheds light on whether the predictability is due to mispricing or risk exposure. There are three ways to consider these models: First, we can consider how to test traditional factor models and estimate the associated risk premia, where the factors are specified ex ante. Second, we can analyze similar problems for latent factor models. Finally, going beyond the traditional setup, we can consider recent studies on asset-specific risks. This analysis provides the framework to understand the economic driving forces of predictability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
Lucas应助踏雪采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
4秒前
tuanheqi应助科研通管家采纳,获得150
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
Battery应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得30
6秒前
浮游应助科研通管家采纳,获得10
6秒前
rylynn完成签到,获得积分10
6秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
李涵发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
Su发布了新的文献求助10
6秒前
Owen应助江睿曦采纳,获得10
7秒前
8秒前
凯凯发布了新的文献求助10
8秒前
9秒前
9秒前
小马甲应助亦玉采纳,获得10
9秒前
赘婿应助xavier采纳,获得10
10秒前
wjw完成签到,获得积分10
10秒前
我很忙完成签到,获得积分10
10秒前
11秒前
11秒前
icreat发布了新的文献求助10
12秒前
研友_VZG7GZ应助LL采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474