Asset Pricing: Cross-Section Predictability

可预测性 文件夹 水准点(测量) 计量经济学 夏普比率 经济 证券交易所 数学金融学 计算机科学 资本资产定价模型 金融经济学 精算学 数学 统计 财务 地理 大地测量学
作者
Paolo Zaffaroni,Guofu Zhou
标识
DOI:10.1093/acrefore/9780190625979.013.870
摘要

A fundamental question in finance is the study of why different assets have different expected returns, which is intricately linked to the issue of cross-section prediction in the sense of addressing the question “What explains the cross section of expected returns?” There is vast literature on this topic. There are state-of-the-art methods used to forecast the cross section of stock returns with firm characteristics predictors, and the same methods can be applied to other asset classes, such as corporate bonds and foreign exchange rates, and to managed portfolios such mutual and hedge funds. First, there are the traditional ordinary least squares and weighted least squares methods, as well as the recently developed various machine learning approaches such as neutral networks and genetic programming. These are the main methods used today in applications. There are three measures that assess how the various methods perform. The first is the Sharpe ratio of a long–short portfolio that longs the assets with the highest predicted return and shorts those with the lowest. This measure provides the economic value for one method versus another. The second measure is an out-of-sample R 2 that evaluates how the forecasts perform relative to a natural benchmark that is the cross-section mean. This is important as any method that fails to outperform the benchmark is questionable. The third measure is how well the predicted returns explain the realized ones. This provides an overall error assessment cross all the stocks. Factor models are another tool used to understand cross-section predictability. This sheds light on whether the predictability is due to mispricing or risk exposure. There are three ways to consider these models: First, we can consider how to test traditional factor models and estimate the associated risk premia, where the factors are specified ex ante. Second, we can analyze similar problems for latent factor models. Finally, going beyond the traditional setup, we can consider recent studies on asset-specific risks. This analysis provides the framework to understand the economic driving forces of predictability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助木木采纳,获得10
1秒前
1秒前
明亮的代灵完成签到 ,获得积分10
1秒前
1秒前
Soche完成签到,获得积分10
1秒前
海风完成签到,获得积分10
2秒前
酷波er应助汪汪队睡大觉采纳,获得10
2秒前
科研通AI2S应助可乐采纳,获得10
3秒前
4秒前
Violet完成签到,获得积分10
4秒前
4秒前
酷波er应助周文采纳,获得10
5秒前
脑洞疼应助cindy采纳,获得10
6秒前
NexusExplorer应助mmol采纳,获得10
6秒前
6秒前
6秒前
瘦瘦小萱完成签到,获得积分20
6秒前
刀特左完成签到,获得积分10
7秒前
du完成签到 ,获得积分10
7秒前
AAA111122发布了新的文献求助10
7秒前
7秒前
科研小白完成签到 ,获得积分10
8秒前
haimaisi完成签到,获得积分10
8秒前
8秒前
woodword完成签到,获得积分10
8秒前
苗条的语海完成签到,获得积分10
8秒前
小菜张发布了新的文献求助10
9秒前
鳗鱼新之发布了新的文献求助10
9秒前
yjchenf完成签到 ,获得积分10
9秒前
吴凡发布了新的文献求助10
10秒前
Hui完成签到,获得积分20
10秒前
俊逸的咖啡完成签到,获得积分10
10秒前
想把太阳揣兜里完成签到,获得积分10
10秒前
想人陪的未来完成签到,获得积分10
11秒前
wanci应助坚强的严青采纳,获得10
11秒前
减肥为窈窕完成签到,获得积分10
11秒前
文龙发布了新的文献求助10
11秒前
烂漫的猕猴桃完成签到,获得积分10
11秒前
lml520完成签到,获得积分10
11秒前
GGbong完成签到 ,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134416
求助须知:如何正确求助?哪些是违规求助? 2785328
关于积分的说明 7771336
捐赠科研通 2440922
什么是DOI,文献DOI怎么找? 1297593
科研通“疑难数据库(出版商)”最低求助积分说明 625007
版权声明 600792