Design and In Silico Evaluation of an Exercise Decision Support System Using Digital Twin Models

有氧运动 医学 胰岛素抵抗 餐食 1型糖尿病 2型糖尿病 物理疗法 阻力训练 糖尿病 内科学 胰岛素 内分泌学
作者
Gavin Young,Robert H. Dodier,Joseph El Youssef,Jessica R. Castle,Leah M. Wilson,Michael C. Riddell,Peter G. Jacobs
出处
期刊:Journal of diabetes science and technology [SAGE Publishing]
卷期号:18 (2): 324-334 被引量:2
标识
DOI:10.1177/19322968231223217
摘要

Background: Managing glucose levels during exercise is challenging for individuals with type 1 diabetes (T1D) since multiple factors including activity type, duration, intensity and other factors must be considered. Current decision support tools lack personalized recommendations and fail to distinguish between aerobic and resistance exercise. We propose an exercise-aware decision support system (exDSS) that uses digital twins to deliver personalized recommendations to help people with T1D maintain safe glucose levels (70-180 mg/dL) and avoid low glucose (<70 mg/dL) during and after exercise. Methods: We evaluated exDSS using various exercise and meal scenarios recorded from a large, free-living study of aerobic and resistance exercise. The model inputs were heart rate, insulin, and meal data. Glucose responses were simulated during and after 30-minute exercise sessions (676 aerobic, 631 resistance) from 247 participants. Glucose outcomes were compared when participants followed exDSS recommendations, clinical guidelines, or did not modify behavior (no intervention). Results: exDSS significantly improved mean time in range for aerobic (80.2% to 92.3%, P < .0001) and resistance (72.3% to 87.3%, P < .0001) exercises compared with no intervention, and versus clinical guidelines (aerobic: 82.2%, P < .0001; resistance: 80.3%, P < .0001). exDSS reduced time spent in low glucose for both exercise types compared with no intervention (aerobic: 15.1% to 5.1%, P < .0001; resistance: 18.2% to 6.6%, P < .0001) and was comparable with following clinical guidelines (aerobic: 4.5%, resistance: 8.1%, P = N.S.). Conclusions: The exDSS tool significantly improved glucose outcomes during and after exercise versus following clinical guidelines and no intervention providing motivation for clinical evaluation of the exDSS system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duo完成签到,获得积分10
1秒前
万能图书馆应助alexisgood采纳,获得30
1秒前
科研混子完成签到,获得积分10
1秒前
小蘑菇应助黎乐荷采纳,获得10
2秒前
快乐再出发完成签到,获得积分10
2秒前
2秒前
一枚小豆完成签到,获得积分10
2秒前
3秒前
zk001完成签到,获得积分20
3秒前
hongxian完成签到,获得积分10
3秒前
4秒前
小李完成签到,获得积分10
4秒前
落后谷兰完成签到,获得积分20
4秒前
栗子完成签到,获得积分10
4秒前
大兵哥发布了新的文献求助10
5秒前
大地完成签到,获得积分10
5秒前
豌豆尖完成签到,获得积分10
5秒前
5秒前
5秒前
务实的南露完成签到,获得积分10
6秒前
6秒前
???完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
dypdyp应助djbj2022采纳,获得10
7秒前
duzhi给duzhi的求助进行了留言
7秒前
斯文败类应助半文采纳,获得10
8秒前
LYNB完成签到 ,获得积分10
8秒前
123完成签到,获得积分10
8秒前
8秒前
ning发布了新的文献求助10
8秒前
ccl完成签到,获得积分10
8秒前
栗子发布了新的文献求助10
8秒前
mslln发布了新的文献求助10
8秒前
LFC完成签到,获得积分10
8秒前
9秒前
万泉部诗人完成签到,获得积分10
9秒前
vadfdfb发布了新的文献求助10
9秒前
lu发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968934
求助须知:如何正确求助?哪些是违规求助? 3513835
关于积分的说明 11170238
捐赠科研通 3249167
什么是DOI,文献DOI怎么找? 1794650
邀请新用户注册赠送积分活动 875278
科研通“疑难数据库(出版商)”最低求助积分说明 804755