BlastAssist: a deep learning pipeline to measure interpretable features of human embryos

人工智能 胚胎 原核 可解释性 管道(软件) 计算机科学 生物 遗传学 胚胎发生 合子 程序设计语言
作者
Helen Y Yang,Brian Leahy,Won-Dong Jang,Donglai Wei,Yael Kalma,Roni Rahav,Ariella Carmon,Rotem Kopel,Foad Azem,Marta Venturas,Colm P. Kelleher,Liz Cam,Hanspeter Pfister,Daniel Needleman,Dalit Ben‐Yosef
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:39 (4): 698-708 被引量:2
标识
DOI:10.1093/humrep/deae024
摘要

Abstract STUDY QUESTION Can the BlastAssist deep learning pipeline perform comparably to or outperform human experts and embryologists at measuring interpretable, clinically relevant features of human embryos in IVF? SUMMARY ANSWER The BlastAssist pipeline can measure a comprehensive set of interpretable features of human embryos and either outperform or perform comparably to embryologists and human experts in measuring these features, WHAT IS KNOWN ALREADY Some studies have applied deep learning and developed ‘black-box’ algorithms to predict embryo viability directly from microscope images and videos but these lack interpretability and generalizability. Other studies have developed deep learning networks to measure individual features of embryos but fail to conduct careful comparisons to embryologists’ performance, which are fundamental to demonstrate the network’s effectiveness. STUDY DESIGN, SIZE, DURATION We applied the BlastAssist pipeline to 67 043 973 images (32 939 embryos) recorded in the IVF lab from 2012 to 2017 in Tel Aviv Sourasky Medical Center. We first compared the pipeline measurements of individual images/embryos to manual measurements by human experts for sets of features, including: (i) fertilization status (n = 207 embryos), (ii) cell symmetry (n = 109 embryos), (iii) degree of fragmentation (n = 6664 images), and (iv) developmental timing (n = 21 036 images). We then conducted detailed comparisons between pipeline outputs and annotations made by embryologists during routine treatments for features, including: (i) fertilization status (n = 18 922 embryos), (ii) pronuclei (PN) fade time (n = 13 781 embryos), (iii) degree of fragmentation on Day 2 (n = 11 582 embryos), and (iv) time of blastulation (n = 3266 embryos). In addition, we compared the pipeline outputs to the implantation results of 723 single embryo transfer (SET) cycles, and to the live birth results of 3421 embryos transferred in 1801 cycles. PARTICIPANTS/MATERIALS, SETTING, METHODS In addition to EmbryoScope™ image data, manual embryo grading and annotations, and electronic health record (EHR) data on treatment outcomes were also included. We integrated the deep learning networks we developed for individual features to construct the BlastAssist pipeline. Pearson’s χ2 test was used to evaluate the statistical independence of individual features and implantation success. Bayesian statistics was used to evaluate the association of the probability of an embryo resulting in live birth to BlastAssist inputs. MAIN RESULTS AND THE ROLE OF CHANCE The BlastAssist pipeline integrates five deep learning networks and measures comprehensive, interpretable, and quantitative features in clinical IVF. The pipeline performs similarly or better than manual measurements. For fertilization status, the network performs with very good parameters of specificity and sensitivity (area under the receiver operating characteristics (AUROC) 0.84–0.94). For symmetry score, the pipeline performs comparably to the human expert at both 2-cell (r = 0.71 ± 0.06) and 4-cell stages (r = 0.77 ± 0.07). For degree of fragmentation, the pipeline (acc = 69.4%) slightly under-performs compared to human experts (acc = 73.8%). For developmental timing, the pipeline (acc = 90.0%) performs similarly to human experts (acc = 91.4%). There is also strong agreement between pipeline outputs and annotations made by embryologists during routine treatments. For fertilization status, the pipeline and embryologists strongly agree (acc = 79.6%), and there is strong correlation between the two measurements (r = 0.683). For degree of fragmentation, the pipeline and embryologists mostly agree (acc = 55.4%), and there is also strong correlation between the two measurements (r = 0.648). For both PN fade time (r = 0.787) and time of blastulation (r = 0.887), there’s strong correlation between the pipeline and embryologists. For SET cycles, 2-cell time (P < 0.01) and 2-cell symmetry (P < 0.03) are significantly correlated with implantation success rate, while other features showed correlations with implantation success without statistical significance. In addition, 2-cell time (P < 5 × 10−11), PN fade time (P < 5 × 10−10), degree of fragmentation on Day 3 (P < 5 × 10−4), and 2-cell symmetry (P < 5 × 10−3) showed statistically significant correlation with the probability of the transferred embryo resulting in live birth. LIMITATIONS, REASONS FOR CAUTION We have not tested the BlastAssist pipeline on data from other clinics or other time-lapse microscopy (TLM) systems. The association study we conducted with live birth results do not take into account confounding variables, which will be necessary to construct an embryo selection algorithm. Randomized controlled trials (RCT) will be necessary to determine whether the pipeline can improve success rates in clinical IVF. WIDER IMPLICATIONS OF THE FINDINGS BlastAssist provides a comprehensive and holistic means of evaluating human embryos. Instead of using a black-box algorithm, BlastAssist outputs meaningful measurements of embryos that can be interpreted and corroborated by embryologists, which is crucial in clinical decision making. Furthermore, the unprecedentedly large dataset generated by BlastAssist measurements can be used as a powerful resource for further research in human embryology and IVF. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Harvard Quantitative Biology Initiative, the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard (award number 1764269), the National Institute of Heath (award number R01HD104969), the Perelson Fund, and the Sagol fund for embryos and stem cells as part of the Sagol Network. The authors declare no competing interests. TRIAL REGISTRATION NUMBER Not applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助有风采纳,获得10
1秒前
Lin完成签到,获得积分10
1秒前
科研通AI5应助肉松小贝采纳,获得10
2秒前
粉色完成签到,获得积分10
2秒前
Ll发布了新的文献求助10
2秒前
2秒前
愉快彩虹发布了新的文献求助10
3秒前
CTL完成签到,获得积分10
3秒前
3秒前
共享精神应助加减乘除采纳,获得10
3秒前
3秒前
恬恬完成签到,获得积分10
3秒前
4秒前
22发布了新的文献求助10
4秒前
aacc956发布了新的文献求助10
4秒前
4秒前
谨慎涵柏完成签到,获得积分10
5秒前
快乐的如风完成签到,获得积分10
6秒前
7秒前
吃猫的鱼完成签到,获得积分10
7秒前
脑洞疼应助润润轩轩采纳,获得10
8秒前
刘文静完成签到,获得积分10
9秒前
Southluuu发布了新的文献求助10
9秒前
chenjyuu发布了新的文献求助10
9秒前
9秒前
粗暴的仙人掌完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
logic发布了新的文献求助10
10秒前
习习应助生动的雨竹采纳,获得10
10秒前
bo完成签到 ,获得积分10
10秒前
迟大猫应助啵乐乐采纳,获得10
11秒前
安雯完成签到 ,获得积分10
11秒前
HuLL完成签到,获得积分10
11秒前
Yolo完成签到 ,获得积分10
11秒前
难过的慕青完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759