An approach for handwritten Chinese text recognition unifying character segmentation and recognition

分割 性格(数学) 人工智能 字符识别 模式识别(心理学) 计算机科学 智能字识别 语音识别 自然语言处理 智能字符识别 数学 图像(数学) 几何学
作者
Mingming Yu,Heng Zhang,Fei Yin,Cheng-Lin Liu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:: 110373-110373
标识
DOI:10.1016/j.patcog.2024.110373
摘要

Text line recognition methods can be categorized into explicit segmentation based and implicit segmentation based ones. Explicit segmentation based methods require character-level annotation during training, while implicit segmentation based methods, trained on line-level annotated data, face alignment drift challenges. Though some methods have been proposed to address these challenges using weakly supervised object detection, they often rely on cumbersome pseudo-box generation processes and complex decoding. In this paper, we propose a unified framework to overcome these challenges, achieving high accuracy in text recognition and character segmentation. To eliminate the need of character-level annotated real text line data in training, we introduce a novel training paradigm that utilizes character-level annotated synthetic data and line-level annotated real data jointly. For synthetic data, candidate characters are explicitly aligned with labeled characters to generate hard labels for supervising model training. For real data, implicit alignment is produced by Connectionist Temporal Classification (CTC) mapping to provide soft labels for weakly-supervised model training. And for inference, we propose two decoding strategies leveraging the advantages of Non-Maximum Suppression (NMS) and CTC decoding. Extensive experiments on benchmark datasets demonstrate the superior performance of our method in text recognition and character localization, even with minimal amounts of character-level annotated line data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助猪猪hero采纳,获得10
1秒前
无名指完成签到 ,获得积分10
2秒前
冷酷的风华完成签到,获得积分10
2秒前
研友_V8RB68完成签到,获得积分10
3秒前
深情安青应助PlanetaryLayer采纳,获得10
3秒前
波里舞完成签到 ,获得积分10
3秒前
潘2333完成签到,获得积分10
4秒前
学术屎壳郎完成签到,获得积分10
5秒前
Juneaper完成签到,获得积分10
5秒前
7秒前
彭于晏应助夜安采纳,获得10
7秒前
8秒前
王者归来发布了新的文献求助200
9秒前
温柔沛槐给温柔沛槐的求助进行了留言
9秒前
9秒前
欧阳娜娜发布了新的文献求助10
12秒前
JianminLuo完成签到 ,获得积分10
13秒前
16秒前
fighting完成签到,获得积分10
16秒前
科研通AI5应助乐观猕猴桃采纳,获得10
18秒前
18秒前
22秒前
23秒前
monica完成签到,获得积分10
24秒前
24秒前
27秒前
newton发布了新的文献求助30
27秒前
田様应助爱听歌笑寒采纳,获得10
27秒前
巧克力素完成签到 ,获得积分10
27秒前
28秒前
28秒前
猪猪hero发布了新的文献求助10
29秒前
zh完成签到 ,获得积分10
30秒前
cxy3311完成签到,获得积分10
30秒前
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
31秒前
bwx驳回了冰魂应助
31秒前
31秒前
SciGPT应助科研通管家采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775609
求助须知:如何正确求助?哪些是违规求助? 3321227
关于积分的说明 10204267
捐赠科研通 3036041
什么是DOI,文献DOI怎么找? 1665963
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766