Conduction mechanism analysis and modeling of different gas diffusion layers for PEMFC to improve their bulk conductivities via microstructure design

微观结构 热传导 扩散 机制(生物学) 材料科学 气体扩散 质子交换膜燃料电池 热力学 燃料电池 复合材料 化学工程 工程类 物理 量子力学
作者
Lingfeng Ye,Diankai Qiu,Linfa Peng,Xinmin Lai
出处
期刊:Applied Energy [Elsevier]
卷期号:362: 122987-122987 被引量:2
标识
DOI:10.1016/j.apenergy.2024.122987
摘要

Increasing the conductivity of gas diffusion layers (GDLs) is an important way to improve the output performance of polymer electrolyte membrane fuel cells (PEMFCs). However, the complex porous fiber structures of GDLs significantly enhances the difficulty of quantitatively altering their conductivity which is determined by the carbon fibers and the conduction characteristics between fibers. In addition, the microstructures of various types of GDLs are different. Thus, it is a considerable challenge to explore the conductive mechanisms of these porous materials and optimize their structures to reduce their bulk resistances. In this work, a mathematical graph theory model that applies to the through-plane (T-P) bulk resistance prediction of two types of commonly used GDLs, carbon paper and carbon felt, is established to explain their different micro conduction mechanisms in depth. In addition to the number of fiber contact points, their distribution, as well as the resistance of the carbon fibers, are all important factors affecting the T-P conductivity. Optimizing fiber density and fiber diameter can significantly improve the T-P conductivity of carbon paper. In comparison, making the structure of carbon felt more compact so that the distribution of its contact points in the T-P direction can be more uniform will be more effective for the reduction of its T-P bulk resistance. Meanwhile, the T-P bulk resistance of carbon paper can also be effectively improved by optimizing the content and distribution of the binders. A method to decline the bulk resistance of carbon paper by aggregating the binders in the in-plane (IP) direction is proposed. The simulation results show that it can reduce the T-P bulk resistance of carbon paper by about 19.9% at a compressive stress of 1.5 MPa. This study provides further guidance for optimizing the structural designs of GDLs to optimize their conduction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七叶树完成签到,获得积分10
刚刚
刚刚
爆米花应助清爽泥猴桃采纳,获得10
刚刚
皮蛋完成签到,获得积分10
1秒前
彭于彦祖应助奔奔采纳,获得30
1秒前
1秒前
jxt完成签到,获得积分10
1秒前
乐乐应助亚尔采纳,获得10
2秒前
Leona666发布了新的文献求助100
3秒前
上官若男应助拼搏的从雪采纳,获得10
3秒前
MMM发布了新的文献求助10
3秒前
忧心的捕完成签到,获得积分10
3秒前
自由妙竹完成签到 ,获得积分10
3秒前
kurumi0601完成签到,获得积分10
3秒前
3秒前
端庄千琴完成签到,获得积分10
3秒前
rorraine_xu完成签到,获得积分10
3秒前
在水一方应助江河JT采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
fengjingjun完成签到,获得积分10
4秒前
4秒前
5秒前
0994完成签到 ,获得积分10
5秒前
852应助林加雄采纳,获得10
5秒前
6秒前
Criminology34应助Iris99采纳,获得10
6秒前
7秒前
Owen应助忧心的捕采纳,获得10
7秒前
小二郎应助ZiruiDing采纳,获得10
8秒前
8秒前
8秒前
8秒前
菜菜发布了新的文献求助10
8秒前
Akim应助啊懂采纳,获得10
9秒前
贰拾发布了新的文献求助10
9秒前
亚尔完成签到,获得积分10
9秒前
9秒前
ee发布了新的文献求助10
9秒前
科研通AI6应助棍棍来也采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786