Conduction mechanism analysis and modeling of different gas diffusion layers for PEMFC to improve their bulk conductivities via microstructure design

微观结构 热传导 扩散 机制(生物学) 材料科学 气体扩散 质子交换膜燃料电池 热力学 燃料电池 复合材料 化学工程 工程类 物理 量子力学
作者
Lingfeng Ye,Diankai Qiu,Linfa Peng,Xinmin Lai
出处
期刊:Applied Energy [Elsevier BV]
卷期号:362: 122987-122987 被引量:2
标识
DOI:10.1016/j.apenergy.2024.122987
摘要

Increasing the conductivity of gas diffusion layers (GDLs) is an important way to improve the output performance of polymer electrolyte membrane fuel cells (PEMFCs). However, the complex porous fiber structures of GDLs significantly enhances the difficulty of quantitatively altering their conductivity which is determined by the carbon fibers and the conduction characteristics between fibers. In addition, the microstructures of various types of GDLs are different. Thus, it is a considerable challenge to explore the conductive mechanisms of these porous materials and optimize their structures to reduce their bulk resistances. In this work, a mathematical graph theory model that applies to the through-plane (T-P) bulk resistance prediction of two types of commonly used GDLs, carbon paper and carbon felt, is established to explain their different micro conduction mechanisms in depth. In addition to the number of fiber contact points, their distribution, as well as the resistance of the carbon fibers, are all important factors affecting the T-P conductivity. Optimizing fiber density and fiber diameter can significantly improve the T-P conductivity of carbon paper. In comparison, making the structure of carbon felt more compact so that the distribution of its contact points in the T-P direction can be more uniform will be more effective for the reduction of its T-P bulk resistance. Meanwhile, the T-P bulk resistance of carbon paper can also be effectively improved by optimizing the content and distribution of the binders. A method to decline the bulk resistance of carbon paper by aggregating the binders in the in-plane (IP) direction is proposed. The simulation results show that it can reduce the T-P bulk resistance of carbon paper by about 19.9% at a compressive stress of 1.5 MPa. This study provides further guidance for optimizing the structural designs of GDLs to optimize their conduction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FreeRay完成签到,获得积分10
刚刚
辞清完成签到 ,获得积分10
刚刚
刚刚
披萨红完成签到,获得积分10
刚刚
哇撒发布了新的文献求助10
1秒前
馒头吃不起完成签到 ,获得积分10
1秒前
王璐完成签到,获得积分10
1秒前
藿藿完成签到,获得积分10
2秒前
3秒前
秋夏发布了新的文献求助10
3秒前
Charon发布了新的文献求助10
4秒前
科研通AI2S应助冷静新烟采纳,获得10
4秒前
脑洞疼应助Kaka采纳,获得30
4秒前
慕青应助小哥采纳,获得10
4秒前
英俊的铭应助霞霞采纳,获得10
4秒前
刘妞妞应助酷炫翠桃采纳,获得10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
活力安筠应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得30
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
jie酱拌面应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
浮游应助无心的依秋采纳,获得40
5秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
jie酱拌面应助科研通管家采纳,获得10
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
热心子轩应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
搜集达人应助adasdad采纳,获得10
6秒前
all应助科研通管家采纳,获得20
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
178应助科研通管家采纳,获得10
6秒前
w_tiger完成签到 ,获得积分10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513