Conduction mechanism analysis and modeling of different gas diffusion layers for PEMFC to improve their bulk conductivities via microstructure design

微观结构 热传导 扩散 机制(生物学) 材料科学 气体扩散 质子交换膜燃料电池 热力学 燃料电池 复合材料 化学工程 工程类 物理 量子力学
作者
Lingfeng Ye,Diankai Qiu,Linfa Peng,Xinmin Lai
出处
期刊:Applied Energy [Elsevier BV]
卷期号:362: 122987-122987 被引量:2
标识
DOI:10.1016/j.apenergy.2024.122987
摘要

Increasing the conductivity of gas diffusion layers (GDLs) is an important way to improve the output performance of polymer electrolyte membrane fuel cells (PEMFCs). However, the complex porous fiber structures of GDLs significantly enhances the difficulty of quantitatively altering their conductivity which is determined by the carbon fibers and the conduction characteristics between fibers. In addition, the microstructures of various types of GDLs are different. Thus, it is a considerable challenge to explore the conductive mechanisms of these porous materials and optimize their structures to reduce their bulk resistances. In this work, a mathematical graph theory model that applies to the through-plane (T-P) bulk resistance prediction of two types of commonly used GDLs, carbon paper and carbon felt, is established to explain their different micro conduction mechanisms in depth. In addition to the number of fiber contact points, their distribution, as well as the resistance of the carbon fibers, are all important factors affecting the T-P conductivity. Optimizing fiber density and fiber diameter can significantly improve the T-P conductivity of carbon paper. In comparison, making the structure of carbon felt more compact so that the distribution of its contact points in the T-P direction can be more uniform will be more effective for the reduction of its T-P bulk resistance. Meanwhile, the T-P bulk resistance of carbon paper can also be effectively improved by optimizing the content and distribution of the binders. A method to decline the bulk resistance of carbon paper by aggregating the binders in the in-plane (IP) direction is proposed. The simulation results show that it can reduce the T-P bulk resistance of carbon paper by about 19.9% at a compressive stress of 1.5 MPa. This study provides further guidance for optimizing the structural designs of GDLs to optimize their conduction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LR完成签到,获得积分10
2秒前
2秒前
2秒前
YiWei发布了新的文献求助10
3秒前
3秒前
ln发布了新的文献求助10
4秒前
自然的南露完成签到 ,获得积分10
5秒前
刘丽蓓发布了新的文献求助10
6秒前
6秒前
小药师发布了新的文献求助10
6秒前
7秒前
思源应助mof采纳,获得10
8秒前
8秒前
远不止这些完成签到,获得积分10
8秒前
8秒前
song发布了新的文献求助10
8秒前
传奇3应助wwwwww采纳,获得10
10秒前
12秒前
大猫发布了新的文献求助10
13秒前
Speague发布了新的文献求助10
13秒前
水色完成签到,获得积分10
14秒前
14秒前
dawei完成签到 ,获得积分10
14秒前
Ni完成签到,获得积分10
15秒前
尾状叶完成签到 ,获得积分10
18秒前
19秒前
小药师完成签到,获得积分10
19秒前
年糕.发布了新的文献求助10
20秒前
21秒前
斯文败类应助duxiao采纳,获得10
22秒前
pass发布了新的文献求助10
22秒前
zhj完成签到,获得积分10
23秒前
杰杰发布了新的文献求助10
23秒前
田様应助成就的靖琪采纳,获得10
23秒前
斯文败类应助Yuanyuan采纳,获得10
23秒前
隐形曼青应助HY采纳,获得10
23秒前
思源应助水色采纳,获得10
24秒前
25秒前
MiManchi发布了新的文献求助10
25秒前
现代的访曼应助花开不败采纳,获得20
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352