Conduction mechanism analysis and modeling of different gas diffusion layers for PEMFC to improve their bulk conductivities via microstructure design

微观结构 热传导 扩散 机制(生物学) 材料科学 气体扩散 质子交换膜燃料电池 热力学 燃料电池 复合材料 化学工程 工程类 物理 量子力学
作者
Lingfeng Ye,Diankai Qiu,Linfa Peng,Xinmin Lai
出处
期刊:Applied Energy [Elsevier]
卷期号:362: 122987-122987 被引量:2
标识
DOI:10.1016/j.apenergy.2024.122987
摘要

Increasing the conductivity of gas diffusion layers (GDLs) is an important way to improve the output performance of polymer electrolyte membrane fuel cells (PEMFCs). However, the complex porous fiber structures of GDLs significantly enhances the difficulty of quantitatively altering their conductivity which is determined by the carbon fibers and the conduction characteristics between fibers. In addition, the microstructures of various types of GDLs are different. Thus, it is a considerable challenge to explore the conductive mechanisms of these porous materials and optimize their structures to reduce their bulk resistances. In this work, a mathematical graph theory model that applies to the through-plane (T-P) bulk resistance prediction of two types of commonly used GDLs, carbon paper and carbon felt, is established to explain their different micro conduction mechanisms in depth. In addition to the number of fiber contact points, their distribution, as well as the resistance of the carbon fibers, are all important factors affecting the T-P conductivity. Optimizing fiber density and fiber diameter can significantly improve the T-P conductivity of carbon paper. In comparison, making the structure of carbon felt more compact so that the distribution of its contact points in the T-P direction can be more uniform will be more effective for the reduction of its T-P bulk resistance. Meanwhile, the T-P bulk resistance of carbon paper can also be effectively improved by optimizing the content and distribution of the binders. A method to decline the bulk resistance of carbon paper by aggregating the binders in the in-plane (IP) direction is proposed. The simulation results show that it can reduce the T-P bulk resistance of carbon paper by about 19.9% at a compressive stress of 1.5 MPa. This study provides further guidance for optimizing the structural designs of GDLs to optimize their conduction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分20
刚刚
1秒前
ry发布了新的文献求助10
1秒前
lewis17发布了新的文献求助10
2秒前
打打应助长风采纳,获得10
3秒前
呵呵呵呵呵呵123完成签到,获得积分10
4秒前
4秒前
Erren完成签到 ,获得积分10
4秒前
zhw297完成签到,获得积分10
5秒前
5秒前
伏波完成签到,获得积分0
5秒前
海盗船长完成签到,获得积分10
5秒前
5秒前
小于完成签到,获得积分10
5秒前
小马甲应助韩_采纳,获得10
5秒前
天天快乐应助summuryi采纳,获得10
5秒前
未来可期完成签到,获得积分10
5秒前
专一的滑板完成签到,获得积分20
6秒前
ls发布了新的文献求助10
6秒前
DMSO666完成签到,获得积分10
7秒前
COSMAO应助太叔凡儿采纳,获得10
7秒前
wsh071117完成签到,获得积分10
8秒前
9秒前
Oooner完成签到,获得积分10
9秒前
111发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
10秒前
犹豫的春天完成签到 ,获得积分10
12秒前
youyou完成签到,获得积分10
13秒前
未来可期发布了新的文献求助10
13秒前
彭于晏应助乐乐妈采纳,获得10
13秒前
mingshi发布了新的文献求助10
13秒前
13秒前
求助人员发布了新的文献求助10
15秒前
15秒前
虚幻的小虾米完成签到,获得积分10
16秒前
orixero应助cindy采纳,获得10
16秒前
17秒前
天天飞人完成签到,获得积分10
17秒前
关关过应助科研通管家采纳,获得20
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758