Conduction mechanism analysis and modeling of different gas diffusion layers for PEMFC to improve their bulk conductivities via microstructure design

微观结构 热传导 扩散 机制(生物学) 材料科学 气体扩散 质子交换膜燃料电池 热力学 燃料电池 复合材料 化学工程 工程类 物理 量子力学
作者
Lingfeng Ye,Diankai Qiu,Linfa Peng,Xinmin Lai
出处
期刊:Applied Energy [Elsevier]
卷期号:362: 122987-122987 被引量:2
标识
DOI:10.1016/j.apenergy.2024.122987
摘要

Increasing the conductivity of gas diffusion layers (GDLs) is an important way to improve the output performance of polymer electrolyte membrane fuel cells (PEMFCs). However, the complex porous fiber structures of GDLs significantly enhances the difficulty of quantitatively altering their conductivity which is determined by the carbon fibers and the conduction characteristics between fibers. In addition, the microstructures of various types of GDLs are different. Thus, it is a considerable challenge to explore the conductive mechanisms of these porous materials and optimize their structures to reduce their bulk resistances. In this work, a mathematical graph theory model that applies to the through-plane (T-P) bulk resistance prediction of two types of commonly used GDLs, carbon paper and carbon felt, is established to explain their different micro conduction mechanisms in depth. In addition to the number of fiber contact points, their distribution, as well as the resistance of the carbon fibers, are all important factors affecting the T-P conductivity. Optimizing fiber density and fiber diameter can significantly improve the T-P conductivity of carbon paper. In comparison, making the structure of carbon felt more compact so that the distribution of its contact points in the T-P direction can be more uniform will be more effective for the reduction of its T-P bulk resistance. Meanwhile, the T-P bulk resistance of carbon paper can also be effectively improved by optimizing the content and distribution of the binders. A method to decline the bulk resistance of carbon paper by aggregating the binders in the in-plane (IP) direction is proposed. The simulation results show that it can reduce the T-P bulk resistance of carbon paper by about 19.9% at a compressive stress of 1.5 MPa. This study provides further guidance for optimizing the structural designs of GDLs to optimize their conduction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞飞飞完成签到,获得积分10
刚刚
lyw完成签到 ,获得积分10
1秒前
Jane完成签到,获得积分20
1秒前
axiang发布了新的文献求助10
1秒前
po发布了新的文献求助10
2秒前
顺利的国良完成签到,获得积分10
2秒前
浮雨微清发布了新的文献求助10
2秒前
solo完成签到,获得积分10
3秒前
whosyourdaddyva完成签到,获得积分10
3秒前
坚定的初南完成签到,获得积分20
3秒前
louis发布了新的文献求助10
4秒前
4秒前
4秒前
飘逸涛完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
AI倩完成签到 ,获得积分10
7秒前
丘比特应助xhl采纳,获得10
7秒前
7秒前
knight发布了新的文献求助50
8秒前
9秒前
solo发布了新的文献求助10
9秒前
公司VV完成签到,获得积分10
9秒前
穆子硕完成签到,获得积分10
10秒前
lvwubin发布了新的文献求助10
10秒前
一一yi完成签到,获得积分10
11秒前
11秒前
在水一方应助JM-Li采纳,获得10
12秒前
12秒前
12秒前
小马甲应助tfldog采纳,获得10
13秒前
搜集达人应助空禅yew采纳,获得10
13秒前
飘逸涛发布了新的文献求助10
13秒前
13秒前
Cloud应助gaogaogao采纳,获得30
13秒前
Haucicy完成签到 ,获得积分10
13秒前
雪sung发布了新的文献求助20
14秒前
彩色的沂发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449