A double network facilitated ion-electron conductor for thermoelectric harvesting with high energy density

塞贝克系数 佩多:嘘 热电效应 热电材料 功率密度 材料科学 离子电导率 化学工程 纳米技术 物理 电解质 化学 物理化学 功率(物理) 复合材料 热力学 电极 热导率 工程类 图层(电子)
作者
Mao Zhang,Qiang Fu,Hua Deng
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:486: 150307-150307 被引量:4
标识
DOI:10.1016/j.cej.2024.150307
摘要

As a young member of the thermoelectric (TE) family, ionic thermoelectric (i-TE) technology stands out due to its exceptionally high thermopower. However, the intermittent nature of its heat utilization results in a weak power output, thus limiting its practical application. To tackle this issue, combining i-TE with electronic thermoelectric (e-TE) materials that exhibit stable heat-to-electricity conversion capabilities presents itself as a promising solution. With this aim, we introduced interpenetrating network (IPN) structure in the fabrication process of mixed ionic-electronic TE (MIETE) materials. Specifically, we created a double network MIETE converter through the in-situ polymerization of ionic poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) on a loosely structured poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/lithium bis(trifluoromethane)sulfonimide (LiTFSI) electronic conductive framework. This subsequent construction of the inert network ensures uninterrupted electronic conductivity and boosts density for improved conductivity (σ). The innovative structural design effectively amalgamates thermodiffusion and Seebeck effects, facilitating continuous electricity generation. The resulting hybrid PEDOT:PSS/LiTFSI/PAMPS-LiCl (PLiP) hydrogels exhibit exceptional TE performance, showing a thermopower of 7.86 mV K−1 and σ of 33.3 mS cm−1. It is worth noting that the PLiP hydrogel illustrates a power generation time of over 4 h and an ultra-high energy density of 93.7 J m−2, which exceeds other TE hydrogels based on the thermodiffusion principle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子完成签到,获得积分10
1秒前
2秒前
天天快乐应助swy采纳,获得10
2秒前
yyh发布了新的文献求助10
4秒前
CQ完成签到,获得积分10
4秒前
5秒前
7秒前
8秒前
jaslek发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
11秒前
11秒前
jjjjjjjjjjj发布了新的文献求助10
12秒前
鸭鸭酱完成签到,获得积分0
12秒前
瞬间发布了新的文献求助10
12秒前
无心完成签到,获得积分20
14秒前
跳跃仙人掌应助asma采纳,获得10
14秒前
gc发布了新的文献求助10
14秒前
17秒前
宜醉宜游宜睡应助走之采纳,获得10
18秒前
18秒前
18秒前
19秒前
Jasper应助满意的初南采纳,获得10
19秒前
圆圆发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
22秒前
粗心的板栗完成签到 ,获得积分10
22秒前
YDSG完成签到,获得积分10
24秒前
斯文败类应助科研通管家采纳,获得50
24秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
24秒前
不懈奋进应助科研通管家采纳,获得30
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2996664
求助须知:如何正确求助?哪些是违规求助? 2657027
关于积分的说明 7191678
捐赠科研通 2292516
什么是DOI,文献DOI怎么找? 1215375
科研通“疑难数据库(出版商)”最低求助积分说明 593153
版权声明 592795