机制(生物学)
水分
相变
钙钛矿(结构)
材料科学
相(物质)
化学物理
化学
凝聚态物理
复合材料
结晶学
物理
有机化学
量子力学
作者
Yufei Liu,Jianting Lin,Qiang Han,Chenggang Yang,Lin Li,Jianrong Xiao,Rongnan Yi,Xiaoliang Liu
标识
DOI:10.1088/1361-6463/ad31e2
摘要
Abstract The humidity stability and phase transition mechanism of the all-inorganic perovskite CsPbI 2 Br based on an optimized dual-source co-evaporation preparation process are investigated at the film interface level. It is found that the CsPbI 2 Br films annealed at 300 °C for several minutes exhibit a best crystallinity and photoelectric properties. The as-grown CsPbI 2 Br film is confirmed to be a α phase with a dark brown cubic crystal structure and an average visible transparency of 35.9%. But it will be transformed into its δ phase with a transparent orthorhombic crystal structure and an average visible transparency of 80.3% after a certain amount of moisture exposure. Compared with the α phase film, the electronic structure of the δ phase has also changed significantly with a VBM shift of about 0.32 eV to high binding energy. The results of AR-XPS show that the water molecules in perovskite CsPbI 2 Br after a moisture exposure only adsorb on the surface rather than penetrate the interior of the lattice. When water molecules adsorb on the lattice surface, halide ions should migrate towards the lattice surface due to their high hydration enthalpy, resulting in halide vacancies within the lattice and causing the reduction of energy barrier for phase transition from α phase to δ phase. So the CsPbI 2 Br film will transform from its α phase to δ phase induced by water vapor, and this phase transition will be reversed to some extent after another annealing.
科研通智能强力驱动
Strongly Powered by AbleSci AI