A deep learning model for predicting the number of stores and average sales in commercial district

人口 人工神经网络 回归分析 业务 营销 统计 计量经济学 计算机科学 数学 人工智能 社会学 人口学
作者
Suan Lee,Seoung Gon Ko,Arousha Haghighian Roudsari,Wookey Lee
出处
期刊:Data and Knowledge Engineering [Elsevier]
卷期号:150: 102277-102277
标识
DOI:10.1016/j.datak.2024.102277
摘要

This paper presents a plan for preparing for changes in the business environment by analyzing and predicting business district data in Seoul. The COVID-19 pandemic and economic crisis caused by inflation have led to an increase in store closures and a decrease in sales, which has had a significant impact on commercial districts. The number of stores and sales are critical factors that directly affect the business environment and can help prepare for changes. This study conducted correlation analysis to extract factors related to the commercial district’s environment in Seoul and estimated the number of stores and sales based on these factors. Using the Kendaltau correlation coefficient, the study found that existing population and working population were the most influential factors. Linear regression, tensor decomposition, Factorization Machine, and deep neural network models were used to estimate the number of stores and sales, with the deep neural network model showing the best performance in RMSE and evaluation indicators. This study also predicted the number of stores and sales of the service industry in a specific area using the population prediction results of the neural prophet model. The study’s findings can help identify commercial district information and predict the number of stores and sales based on location, industry, and influencing factors, contributing to the revitalization of commercial districts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tuotuo完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
xu发布了新的文献求助10
5秒前
LZM完成签到,获得积分10
6秒前
稳重的蜡烛完成签到,获得积分10
8秒前
8秒前
楚卓然2完成签到,获得积分10
10秒前
wangjing应助张志伟采纳,获得10
10秒前
ningjianing完成签到,获得积分10
11秒前
qipupu222完成签到 ,获得积分10
11秒前
13秒前
FOODHUA发布了新的文献求助10
13秒前
13秒前
HEIKU应助楚卓然2采纳,获得10
15秒前
16秒前
16秒前
qp发布了新的文献求助20
17秒前
划水完成签到,获得积分20
18秒前
陶醉觅夏发布了新的文献求助10
19秒前
999eichyy发布了新的文献求助20
19秒前
Yuan发布了新的文献求助10
21秒前
21秒前
23秒前
憨憨鱼发布了新的文献求助10
26秒前
霸气水儿完成签到,获得积分10
27秒前
28秒前
hins发布了新的文献求助10
30秒前
乐乐应助Dceer采纳,获得10
30秒前
飘落完成签到,获得积分10
31秒前
33秒前
34秒前
学习通完成签到,获得积分10
35秒前
是谁在摸鱼完成签到 ,获得积分10
35秒前
莫离完成签到,获得积分20
35秒前
36秒前
飘落发布了新的文献求助10
37秒前
37秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163904
求助须知:如何正确求助?哪些是违规求助? 2814758
关于积分的说明 7906420
捐赠科研通 2474340
什么是DOI,文献DOI怎么找? 1317459
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198