Surface defect detection of sawn timbers based on efficient multilevel feature integration

判别式 计算机科学 特征(语言学) 模式识别(心理学) 相似性(几何) 人工智能 数据挖掘 图像(数学) 哲学 语言学
作者
Yuhang Zhu,Zhezhuang Xu,Ye Lin,Dan Chen,Kunxin Zheng,Yazhou Yuan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 046101-046101 被引量:2
标识
DOI:10.1088/1361-6501/ad15de
摘要

Abstract Surface defect detection of sawn timber is a critical task to ensure the quality of wooden products. Current methods have challenges in considering detection accuracy and speed simultaneously, due to the complexity of defects and the massive length of sawn timbers. Specifically, there are scale variation, large intraclass difference and high interclass similarity in the defects, which reduce the detection accuracy. To overcome these challenges, we propose an efficient multilevel-feature integration network (EMINet) based on YOLOv5s. To obtain discriminative features of defects, the cross fusion module (CFM) is proposed to fully integrate the multilevel features of backbone. In the CFM, the local information aggregation is designed to enrich the detailed information of high-level features, and the global information aggregation is designed to enhance the semantic information of low-level features. Experimental results demonstrate that the proposed EMINet achieves better accuracy with fast speed compared with the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhhh发布了新的文献求助10
1秒前
Orange应助上官志鹏采纳,获得10
2秒前
2秒前
852应助炒栗子采纳,获得10
4秒前
4秒前
一叶扁舟完成签到,获得积分10
5秒前
宇文听南发布了新的文献求助10
5秒前
欣欣然完成签到,获得积分20
5秒前
怦怦完成签到,获得积分10
6秒前
6秒前
Yichen发布了新的文献求助30
6秒前
wood完成签到,获得积分10
6秒前
桐桐应助hhh采纳,获得10
7秒前
韩钰小宝发布了新的文献求助10
7秒前
天天快乐应助Jake采纳,获得10
8秒前
长情小鸽子完成签到,获得积分10
8秒前
8秒前
单薄月饼完成签到,获得积分10
9秒前
sda发布了新的文献求助10
9秒前
了解发布了新的文献求助10
9秒前
沐沐1003完成签到,获得积分10
11秒前
Congmingzhen发布了新的文献求助10
11秒前
jansorchen完成签到,获得积分10
11秒前
lc完成签到,获得积分10
12秒前
13秒前
seine发布了新的文献求助10
13秒前
小羊完成签到,获得积分10
13秒前
14秒前
huahua完成签到 ,获得积分10
14秒前
老孙完成签到,获得积分10
14秒前
卡卡完成签到,获得积分10
15秒前
甜甜玫瑰应助mozaiyan采纳,获得10
15秒前
15秒前
16秒前
竹筏过海完成签到,获得积分0
17秒前
17秒前
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308038
求助须知:如何正确求助?哪些是违规求助? 2941584
关于积分的说明 8504244
捐赠科研通 2616093
什么是DOI,文献DOI怎么找? 1429449
科研通“疑难数据库(出版商)”最低求助积分说明 663767
邀请新用户注册赠送积分活动 648712