Dominance of AI and Machine Learning Techniques in Hybrid Movie Recommendation System Applying Text-to-number Conversion and Cosine Similarity Approaches

余弦相似度 计算机科学 推荐系统 相似性(几何) 均方误差 人工智能 机器学习 情报检索 数据挖掘 三角函数 自然语言处理 模式识别(心理学) 统计 数学 图像(数学) 几何学
作者
MD Rokibul Hasan,Janatul Ferdous
出处
期刊:Journal of computer science and technology studies [Al-Kindi Center for Research and Development]
卷期号:6 (1): 94-102
标识
DOI:10.32996/jcsts.2024.6.1.10
摘要

This research explored movie recommendation systems based on predicting top-rated and suitable movies for users. This research proposed a hybrid movie recommendation system that integrates both text-to-number conversion and cosine similarity approaches to predict the most top-rated and desired movies for the targeted users. The proposed movie recommendation employed the Alternating Least Squares (ALS) algorithm to reinforce the accuracy of movie recommendations. The performance analysis and evaluation were undertaken by employing the widely used "TMDB 5000 Movie Dataset" from the Kaggle dataset. Two experiments were conducted, categorizing the dataset into distinct modules, and the outcomes were contrasted with state-of-the-art models. The first experiment attained a Root Mean Squared Error (RMSE) of 0.97613, while the second experiment expanded predictions to 4800 movies, culminating in a substantially minimized RMSE of 0.8951, portraying a 97% accuracy enhancement. The findings underscore the essence of parameter selection in text-to-number conversion and cosine and the gap for other systems to maintain user preferences for comprehensive and precise data gathering. Overall, the proposed hybrid movie recommendation system demonstrated promising results in predicting top-rated movies and offering personalized and accurate recommendations to users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
深情安青应助临界采纳,获得10
刚刚
LW完成签到,获得积分10
刚刚
Mystic发布了新的文献求助10
刚刚
亚婷儿完成签到,获得积分10
1秒前
AQ完成签到,获得积分10
1秒前
YufanZhang发布了新的文献求助10
2秒前
2秒前
迅速的巧曼完成签到 ,获得积分10
2秒前
2秒前
2秒前
专注无声发布了新的文献求助10
3秒前
饱满夏瑶发布了新的文献求助10
3秒前
Pursuit发布了新的文献求助10
3秒前
华仔应助ying采纳,获得10
4秒前
4秒前
解语花发布了新的文献求助10
4秒前
醒醒发布了新的文献求助10
4秒前
浮游应助ldroc采纳,获得10
4秒前
Yang2完成签到,获得积分10
5秒前
beyond发布了新的文献求助10
5秒前
5秒前
Lucas应助Mystic采纳,获得10
6秒前
6秒前
浮游应助金博洋采纳,获得18
6秒前
6秒前
天天快乐应助哈哈王采纳,获得10
7秒前
7秒前
啦啦啦啦啦啦啦完成签到,获得积分10
7秒前
7秒前
呓语完成签到,获得积分10
8秒前
上官若男应助csy采纳,获得10
8秒前
可爱的雨柏完成签到,获得积分10
9秒前
蛙趣完成签到,获得积分10
9秒前
9秒前
果果完成签到,获得积分10
9秒前
yanwowo完成签到,获得积分10
9秒前
10秒前
星星完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978