已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

L-Net: A lightweight convolutional neural network for devices with low computing power

计算机科学 卷积神经网络 树(集合论) 人工智能 残余物 推论 深度学习 频道(广播) 激活函数 领域(数学) 模式识别(心理学) 领域(数学分析) 人工神经网络 机器学习 算法 数学 数学分析 计算机网络 纯数学
作者
Hua Shen,Zhiwei Wang,Jixin Zhang,Mingwu Zhang
出处
期刊:Information Sciences [Elsevier]
卷期号:660: 120131-120131 被引量:7
标识
DOI:10.1016/j.ins.2024.120131
摘要

Deep learning (DL) has demonstrated exceptional success across various domains, including computer vision, natural language processing, and speech recognition. However, the training and inference processes of DL models typically require substantial computational resources and storage space, presenting a significant challenge within the Internet of Things (IoT) domain. This study contributes theoretically to the field of lightweight DL by proposing L-Net, a lightweight convolutional neural network designed specifically for low-compute devices. The L-Net addresses challenges associated with channel interaction disparities and vanishing gradients. To further improve the network performance, we introduce the residual enhanced channel attention (or R-ECA) module, which combines a bypass mechanism derived from simplified residual learning with the attention mechanism's cross-channel interaction. Additionally, we replace the rectified linear unit function (or ReLU) with an exponential linear unit (or ELU) function to enhance the network's nonlinear expression capability and training speed. We conducted object recognition experiments and compared the accuracy and prediction stability of L-Net with well-known models, such as AlexNet, VGG11, SqueezeNet, ResNet, and MobileNet, to assess its efficacy. Using the CIFAR-10 dataset and our custom dataset of apple tree leaf diseases, our experimental results demonstrate that, with relatively smaller model parameters, L-Net performs exceptionally well in terms of mean Average Precision (mAP), achieving 0.906. Furthermore, when applied to our custom dataset, L-Net exhibits relatively consistent performance across various dataset splits under different ratios, outperforming the majority of models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
衾空发布了新的文献求助10
1秒前
WW完成签到,获得积分20
2秒前
CodeCraft应助木子采纳,获得10
3秒前
3秒前
852应助John采纳,获得10
4秒前
5秒前
6秒前
我是老大应助Breeze采纳,获得10
7秒前
科目三应助优美紫槐采纳,获得10
7秒前
Hello应助hbWang采纳,获得10
8秒前
yaoli0823发布了新的文献求助30
8秒前
8秒前
8秒前
9秒前
9秒前
DDDSK发布了新的文献求助30
10秒前
10秒前
科研通AI6应助科研小魏采纳,获得10
12秒前
John完成签到,获得积分10
12秒前
12秒前
Lee发布了新的文献求助10
13秒前
14秒前
木子发布了新的文献求助10
14秒前
左手写情发布了新的文献求助30
15秒前
ceeray23应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
Mic应助科研通管家采纳,获得10
15秒前
enjoy发布了新的文献求助10
15秒前
852应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
贾克斯发布了新的文献求助10
16秒前
19秒前
杨明智完成签到 ,获得积分10
19秒前
Jasper应助伍寒烟采纳,获得10
19秒前
John发布了新的文献求助10
20秒前
yaoli0823完成签到,获得积分10
20秒前
shining发布了新的文献求助10
20秒前
充电宝应助三七采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650215
求助须知:如何正确求助?哪些是违规求助? 4780069
关于积分的说明 15051513
捐赠科研通 4809083
什么是DOI,文献DOI怎么找? 2572018
邀请新用户注册赠送积分活动 1528258
关于科研通互助平台的介绍 1487075