血管生成
川地31
马森三色染色
脚手架
医学
伤口愈合
血管内皮生长因子
内科学
生物医学工程
外科
免疫组织化学
血管内皮生长因子受体
作者
Fatemeh Heidari,Abazar Yari,Shahram Teimourian,Sanaz Joulai Veijouye,Maliheh Nobakht
标识
DOI:10.1016/j.jss.2022.08.008
摘要
Abstract
Introduction
Chronic wounds are debilitating complications of diabetes mellitus. The present study was conducted to investigate the effect of the hair follicle stem cells (HFSCs) by polycaprolactone scaffold on the healing of incisional cutaneous wounds on streptozotocin-induced diabetic male rats. Methods
The wound model was obtained by a biopsy punch of the skin of the animals' back. The animals were randomly divided into five groups as follows: (1) Sham (nondiabetic, not treated), (2) Control (diabetic, not treated), (3) Scaffold (diabetic, treated with polycaprolactone nanofiber scaffold), (4) HFSCs (diabetic, treated with HFSCs), and (5) Scaffold + HFSCs (diabetic, treated with combination of Scaffold and HFSCs). The wounds were photographed in the course of the treatment and their healing rate was assessed. The samples were collected from the wound sites 7, 14, and 28 d after their development. Angiogenesis was surveyed by examining messenger RNA expression and the protein synthesis levels of vascular endothelial growth factor receptor 2 (VEGFR2) and platelet/endothelial cell adhesion molecule-1/cluster of differentiation 31. The histological changes were investigated using hematoxylin and eosin and Masson's trichrome staining. Furthermore, the wound breaking strength was measured on the 28th day by tensiometry. Results
The application of the VEGFR2 as a substrate promotes the expression of CD31 in HFSCs and Scaffold + HFSCs groups compared to controls (P < 0.0001). HFSCs and scaffold also rescue the diabetes-induced dysfunction as assessed based on the parameters, such as viability, proliferation, colony formation, cellular adhesion, and chemotactic migration. HFSCs augment the levels of VEGFR2 and promote the restoration of the wound healing in diabetic groups. Furthermore, the maximum biomechanical stress significantly increased in the experimental diabetic groups (Scaffold: 1.38 ± 0.09, HFSCs: 2.13 ± 0.8, Scaffold + HFSCs: 2.38 ± 0.11) compared to the diabetes control group (1.16 ± 0.12). Using of HFSCs and scaffold on diabetic wounds leads to an accelerated wound closure, notably. Conclusions
Thus, the current data showed that HFSCs and scaffold form excellent biomaterial in the treatment of diabetic wounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI