Special Issue on Adversarial AI to IoT Security and Privacy Protection: Attacks and Defenses

计算机安全 对抗制 物联网 计算机科学 互联网隐私 隐私保护 人工智能
作者
Honghao Gao,Zhiyuan Tan
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:65 (11): 2847-2848 被引量:1
标识
DOI:10.1093/comjnl/bxac128
摘要

The prosperity of social IoT data brings revolutionary changes to our daily lives and greatly increases the existing data volume. But IoT data are vulnerable due to security and privacy issues. Over the past few years, malicious adversaries exploited various vulnerabilities of AI algorithms and thus compromised the security of AI systems. For example, obfuscating malware code within benign programs or applications to fool the AI-based intrusion detection systems. Thus, applying adversarial AI is supposed to be one of the most useful methods to protect IoT data, including big data mining and analysis, information diffusion, sentiment analysis and opinion mining, social event detection, trend prediction and influence maximization. This special issue brings together leading researchers and developers presenting their latest research and 10 high-quality papers are selected. A summary of these accepted papers is outlined below. In the paper entitled 'AWFC: Preventing Label Flipping Attacks towards Federated Learning for Intelligent IoT' by Zhuo Lv et al., the authors are motivated to prevent label flipping poisoning attacks by observing the changes in model parameters that were trained by different single labels. They propose a novel detection method, called AWFC, that label flipping attacks are detected by identifying the differences of classes in the data. The weight assignments in a fully connected layer of the neural network model are used and the statistical algorithm is applied to find the malicious clients. The experiments are conducted on benchmark data, such as Fashion-MNIST and Intrusion Detection Evaluation Dataset (CIC-IDS2017), where results demonstrate that the method's detection accuracy is better.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joy1234456发布了新的文献求助10
刚刚
科目三应助Jyouang采纳,获得10
1秒前
sandra发布了新的文献求助10
3秒前
Citrus发布了新的文献求助10
3秒前
4秒前
4秒前
feng完成签到,获得积分10
5秒前
wanci应助林弋采纳,获得10
5秒前
5秒前
5秒前
Ava应助碧蓝问安采纳,获得10
7秒前
wanci应助15136780701采纳,获得10
7秒前
记号完成签到,获得积分10
7秒前
7秒前
爆米花应助hhh采纳,获得10
7秒前
haha发布了新的文献求助20
9秒前
Bambi发布了新的文献求助10
9秒前
11秒前
12秒前
12秒前
思睿完成签到,获得积分0
13秒前
sirius12875发布了新的文献求助50
13秒前
隐形曼青应助cc采纳,获得10
14秒前
15秒前
王开放完成签到,获得积分10
15秒前
星辰大海应助Bambi采纳,获得10
15秒前
顾矜应助001026Z采纳,获得10
15秒前
16秒前
文艺蛋挞发布了新的文献求助10
16秒前
娟娟完成签到,获得积分20
17秒前
cl发布了新的文献求助10
17秒前
18秒前
19秒前
沉静幻天完成签到,获得积分10
19秒前
YYYY发布了新的文献求助10
19秒前
20秒前
七里海发布了新的文献求助10
20秒前
巴拉巴拉发布了新的文献求助10
20秒前
雷雷发布了新的文献求助10
20秒前
慕青应助文艺蛋挞采纳,获得10
20秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329002
求助须知:如何正确求助?哪些是违规求助? 2958957
关于积分的说明 8593048
捐赠科研通 2637345
什么是DOI,文献DOI怎么找? 1443453
科研通“疑难数据库(出版商)”最低求助积分说明 668699
邀请新用户注册赠送积分活动 656046