Detection method of timber defects based on target detection algorithm

算法 计算机科学
作者
Dongjie Li,Zilei Zhang,Baogang Wang,Chunmei Yang,Liwei Deng
出处
期刊:Measurement [Elsevier]
卷期号:203: 111937-111937 被引量:25
标识
DOI:10.1016/j.measurement.2022.111937
摘要

• Four types of defects in rubber timber are performed by improved YOLOX. • Improve the feature fusion module of YOLOX by adding ECA attention mechanism and ASSF multi-feature adaptive fusion. • Improve the confidence loss function and change BCE loss to Focal loss. • The regression of the target box was performed using EIOU loss. Deep learning has achieved certain results in the field of wood surface defect detection. To address the problems of low accuracy of the detection results of surface defects on boards, slow detection speed and large number of model parameters, this article take advantage of computer vision to improve the feature fusion module of YOLOX target detection algorithm, by adding efficient channel attention (ECA) mechanism, adaptive spatial feature fusion mechanism (ASFF) and improve the confidence loss and localization loss functions as Focal loss and Efficient Intersection over Union (EIoU) loss, to enhance the feature extraction ability and detection accuracy of the algorithm. Considering the depth and width of the model, the depth-separable convolution and optional multi-version algorithm are used to reduce the model parameters and computational effort to seek the optimal model. Experiments show that the improved model detects four types of defects in rubber timber with a considerable improvement and has significant advantages over other target detection algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助chenchunli采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
YzUCC完成签到,获得积分20
3秒前
俊逸莆发布了新的文献求助10
3秒前
彭于晏应助内向绮琴采纳,获得10
3秒前
CipherSage应助默默书竹采纳,获得10
4秒前
深情的雪糕完成签到 ,获得积分10
4秒前
ghj432发布了新的文献求助30
4秒前
4秒前
小远远应助希望采纳,获得10
5秒前
6秒前
7秒前
研友_LkVMe8发布了新的文献求助10
8秒前
爆米花应助Archer采纳,获得10
9秒前
9秒前
9秒前
zhang完成签到,获得积分10
9秒前
搜集达人应助格拉a采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
12秒前
大个应助123采纳,获得10
12秒前
宝哥完成签到,获得积分10
12秒前
12秒前
英勇雁芙发布了新的文献求助10
12秒前
12秒前
changaipei发布了新的文献求助30
12秒前
言笑晏晏完成签到,获得积分20
12秒前
小马甲应助北极星采纳,获得10
12秒前
火的信仰完成签到 ,获得积分10
13秒前
13秒前
猛猛冲发布了新的文献求助10
14秒前
谦让R发布了新的文献求助30
14秒前
斯文败类应助木樨采纳,获得10
15秒前
科研通AI6应助落雁沙采纳,获得10
15秒前
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583573
求助须知:如何正确求助?哪些是违规求助? 4667363
关于积分的说明 14766995
捐赠科研通 4609622
什么是DOI,文献DOI怎么找? 2529351
邀请新用户注册赠送积分活动 1498473
关于科研通互助平台的介绍 1467170