Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions

计算机科学 断层(地质) 人工智能 模式识别(心理学) 卷积神经网络 特征(语言学) 相似性(几何) 领域(数学分析) 特征提取 数据挖掘 机器学习 边际分布 数学 统计 图像(数学) 随机变量 地质学 数学分析 哲学 地震学 语言学
作者
Yiyao An,Ke Zhang,Yi Chai,Qie Liu,Xinghua Huang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118802-118802 被引量:76
标识
DOI:10.1016/j.eswa.2022.118802
摘要

Unsupervised domain adaptation (UDA)-based methods have made great progress in bearing fault diagnosis under variable working conditions. However, most existing UDA-based methods focus only on minimizing the discrepancy of two working conditions. The similarity of fault features extracted from the bearing vibration signal is ignored. The samples near the distribution boundaries learned by the network might be misclassified. As a result, even if the marginal distributions is aligned well, the diagnosis result may not be satisfactorily. Therefore, this paper proposes a domain adaptation network base on contrastive learning (DACL) to achieve the aim of bearing fault diagnosis cross different working conditions and reduce the probability of samples being classified near or on the boundary of each class to improve diagnosis accuracy. The method is made up of a feature mining module and an adversarial domain adaptation module. In the feature mining module, a one-dimensional Convolutional Neural Network (1-D CNN) is utilized to extract features from raw vibration signals. The adversarial domain adaptation module followed is designed to learn domain-shared discriminant features for aligning marginal distribution. Meanwhile, the contrastive estimation term is designed to quantize the similarity of data distribution and increase the distance between samples of different health conditions, declining the probability of samples near the boundary and improving diagnosis performance. At last, an adaptive factor is introduced to measure the relative importance of transferring and discriminating abilities of the method. The effectiveness of the proposed method is confirmed by examining various fault diagnosis scenarios with domain discrepancies across the source and target domains, using experimental data from two bearing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wlz发布了新的文献求助10
1秒前
诸葛语琴完成签到,获得积分10
3秒前
万能图书馆应助早发论文采纳,获得10
4秒前
小梦完成签到,获得积分10
5秒前
11秒前
jj发布了新的文献求助10
14秒前
guandada完成签到,获得积分10
15秒前
16秒前
爆米花应助虚幻的电灯胆采纳,获得10
18秒前
18秒前
18秒前
guandada发布了新的文献求助30
20秒前
22秒前
tanzhouliang发布了新的文献求助10
23秒前
祁代芙发布了新的文献求助20
23秒前
完美世界应助jj采纳,获得30
25秒前
传奇3应助tanzhouliang采纳,获得10
31秒前
33秒前
李健应助科研通管家采纳,获得10
34秒前
34秒前
打打应助科研通管家采纳,获得10
34秒前
薰硝壤应助科研通管家采纳,获得30
34秒前
34秒前
Mutsu应助科研通管家采纳,获得20
34秒前
科研通AI2S应助科研通管家采纳,获得30
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
34秒前
sine_mora发布了新的文献求助10
36秒前
悦耳非笑发布了新的文献求助30
37秒前
FXe完成签到,获得积分10
44秒前
我是老大应助KoitoYuu采纳,获得10
45秒前
pcr163应助杨茉采纳,获得60
48秒前
51秒前
sine_mora完成签到,获得积分10
52秒前
53秒前
Hello应助fly the bike采纳,获得30
54秒前
54秒前
吞吞完成签到,获得积分10
55秒前
56秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084205
求助须知:如何正确求助?哪些是违规求助? 2737236
关于积分的说明 7544249
捐赠科研通 2386802
什么是DOI,文献DOI怎么找? 1265552
科研通“疑难数据库(出版商)”最低求助积分说明 613127
版权声明 598187