Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions

计算机科学 断层(地质) 人工智能 模式识别(心理学) 卷积神经网络 特征(语言学) 相似性(几何) 领域(数学分析) 特征提取 数据挖掘 机器学习 边际分布 数学 统计 图像(数学) 随机变量 地质学 数学分析 哲学 地震学 语言学
作者
Yiyao An,Ke Zhang,Yi Chai,Qie Liu,Xinghua Huang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118802-118802 被引量:160
标识
DOI:10.1016/j.eswa.2022.118802
摘要

Unsupervised domain adaptation (UDA)-based methods have made great progress in bearing fault diagnosis under variable working conditions. However, most existing UDA-based methods focus only on minimizing the discrepancy of two working conditions. The similarity of fault features extracted from the bearing vibration signal is ignored. The samples near the distribution boundaries learned by the network might be misclassified. As a result, even if the marginal distributions is aligned well, the diagnosis result may not be satisfactorily. Therefore, this paper proposes a domain adaptation network base on contrastive learning (DACL) to achieve the aim of bearing fault diagnosis cross different working conditions and reduce the probability of samples being classified near or on the boundary of each class to improve diagnosis accuracy. The method is made up of a feature mining module and an adversarial domain adaptation module. In the feature mining module, a one-dimensional Convolutional Neural Network (1-D CNN) is utilized to extract features from raw vibration signals. The adversarial domain adaptation module followed is designed to learn domain-shared discriminant features for aligning marginal distribution. Meanwhile, the contrastive estimation term is designed to quantize the similarity of data distribution and increase the distance between samples of different health conditions, declining the probability of samples near the boundary and improving diagnosis performance. At last, an adaptive factor is introduced to measure the relative importance of transferring and discriminating abilities of the method. The effectiveness of the proposed method is confirmed by examining various fault diagnosis scenarios with domain discrepancies across the source and target domains, using experimental data from two bearing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYN发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
周洋完成签到,获得积分10
2秒前
2秒前
3秒前
lezongyang完成签到,获得积分10
3秒前
美丽的问兰关注了科研通微信公众号
3秒前
3秒前
科研通AI6应助ttttt采纳,获得10
3秒前
独特草莓完成签到,获得积分10
5秒前
sabarate发布了新的文献求助10
5秒前
5秒前
5秒前
张天舒发布了新的文献求助10
6秒前
暮然完成签到,获得积分10
7秒前
Rui发布了新的文献求助30
7秒前
sophiey发布了新的文献求助10
7秒前
8秒前
勤恳的凝阳完成签到 ,获得积分20
8秒前
xintai完成签到,获得积分10
8秒前
灵巧的导师完成签到,获得积分10
8秒前
朴素的怜雪完成签到,获得积分10
9秒前
小成发布了新的文献求助10
9秒前
洋洋发布了新的文献求助10
9秒前
9秒前
沉静的白猫完成签到,获得积分20
10秒前
10秒前
11秒前
科目三应助向柯大大采纳,获得10
11秒前
11秒前
11秒前
MI发布了新的文献求助10
12秒前
唐天宇完成签到,获得积分10
12秒前
秦源发布了新的文献求助10
12秒前
海鲜汤完成签到 ,获得积分10
13秒前
14秒前
14秒前
桐桐应助蝉一个夏天采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547820
求助须知:如何正确求助?哪些是违规求助? 4633277
关于积分的说明 14630201
捐赠科研通 4574847
什么是DOI,文献DOI怎么找? 2508654
邀请新用户注册赠送积分活动 1484986
关于科研通互助平台的介绍 1456049