Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions

计算机科学 断层(地质) 人工智能 模式识别(心理学) 卷积神经网络 特征(语言学) 相似性(几何) 领域(数学分析) 特征提取 数据挖掘 机器学习 边际分布 数学 统计 图像(数学) 随机变量 地质学 数学分析 哲学 地震学 语言学
作者
Yiyao An,Ke Zhang,Yi Chai,Qie Liu,Xinghua Huang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118802-118802 被引量:100
标识
DOI:10.1016/j.eswa.2022.118802
摘要

Unsupervised domain adaptation (UDA)-based methods have made great progress in bearing fault diagnosis under variable working conditions. However, most existing UDA-based methods focus only on minimizing the discrepancy of two working conditions. The similarity of fault features extracted from the bearing vibration signal is ignored. The samples near the distribution boundaries learned by the network might be misclassified. As a result, even if the marginal distributions is aligned well, the diagnosis result may not be satisfactorily. Therefore, this paper proposes a domain adaptation network base on contrastive learning (DACL) to achieve the aim of bearing fault diagnosis cross different working conditions and reduce the probability of samples being classified near or on the boundary of each class to improve diagnosis accuracy. The method is made up of a feature mining module and an adversarial domain adaptation module. In the feature mining module, a one-dimensional Convolutional Neural Network (1-D CNN) is utilized to extract features from raw vibration signals. The adversarial domain adaptation module followed is designed to learn domain-shared discriminant features for aligning marginal distribution. Meanwhile, the contrastive estimation term is designed to quantize the similarity of data distribution and increase the distance between samples of different health conditions, declining the probability of samples near the boundary and improving diagnosis performance. At last, an adaptive factor is introduced to measure the relative importance of transferring and discriminating abilities of the method. The effectiveness of the proposed method is confirmed by examining various fault diagnosis scenarios with domain discrepancies across the source and target domains, using experimental data from two bearing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献缺缺应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
清爽老九应助科研通管家采纳,获得10
1秒前
1秒前
JamesPei应助李知恩采纳,获得10
1秒前
shouyu29应助科研通管家采纳,获得10
2秒前
朝天完成签到,获得积分10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
zzzq应助科研通管家采纳,获得10
2秒前
demonox发布了新的文献求助10
2秒前
赖颖豪完成签到 ,获得积分10
2秒前
活力绮兰应助科研通管家采纳,获得20
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
maox1aoxin应助科研通管家采纳,获得30
2秒前
2秒前
3秒前
3秒前
Tong应助wang采纳,获得30
3秒前
畅快蓝血完成签到 ,获得积分10
4秒前
小汤圆完成签到,获得积分10
4秒前
5秒前
晗仔发布了新的文献求助10
5秒前
通~发布了新的文献求助10
5秒前
5秒前
瑶625发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
6秒前
科研小黑关注了科研通微信公众号
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794