亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic speech recognition of Portuguese phonemes using neural networks ensemble

计算机科学 语音识别 人工神经网络 人工智能 语音处理 模式识别(心理学) 过程(计算) 信号(编程语言) 聚类分析 集合(抽象数据类型) 信号处理 机器学习 数字信号处理 计算机硬件 操作系统 程序设计语言
作者
Nadia Nedjah,Alejandra D. Bonilla,Luiza de Macedo Mourelle
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:229: 120378-120378 被引量:7
标识
DOI:10.1016/j.eswa.2023.120378
摘要

The automatic speech recognition based on detection of phonemes provides advantages for online recognition of a speech represented by a sound signal. The development of a system for automatic speech recognition is multidisciplinary. It covers several areas of research, such as linguistics, signal processing and computational intelligence. In this work, the process starts with a speech signal pre-processing to extract the main features of the speech signal at a given instant of time. Inspired by the "divide and conquer" principle, we bridge the complexity gap of automatic speech recognition by devising models based on an ensemble of neural network experts, allowing to divide the huge decision space regarding speech recognition so that each expert takes care only of a delimited area of this decision space. This novel application of this strategy improves the precision, sensitivity and accuracy of the recognition process. Each included expert decides regarding each one of the pre-processed input samples. The decision set thus obtained is weighted. So, the expert with the highest weight for the output will determine the sample final classification. After that, a dynamic post-processing step, implemented as a recurrent neural network, is executed. It aims at mitigating the oscillatory effect that occurs during the recognition of classes with similar characteristics. In this work, two ensembles are investigated. The first is based on the clustering of similar phonetics classes while the second takes care of the imbalanced distribution of samples in the training set. The proposed model achieves 7.63% improvement in terms of accuracy with respect to the best so far related model for automatic speech recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
kss完成签到 ,获得积分10
17秒前
34秒前
可靠诗筠完成签到 ,获得积分10
37秒前
41秒前
wanci应助懒得可爱采纳,获得10
51秒前
青柠完成签到 ,获得积分10
57秒前
1分钟前
牛八先生完成签到,获得积分10
1分钟前
Auralis完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Marciu33发布了新的文献求助10
1分钟前
懒得可爱发布了新的文献求助10
1分钟前
科研通AI5应助Marciu33采纳,获得10
1分钟前
Yoanna应助科研通管家采纳,获得10
1分钟前
Yoanna应助科研通管家采纳,获得10
1分钟前
Yoanna应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
dew发布了新的文献求助10
2分钟前
2分钟前
搜集达人应助dew采纳,获得10
2分钟前
2分钟前
情怀应助刘刘采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
刘刘发布了新的文献求助10
2分钟前
2分钟前
Sakura发布了新的文献求助10
2分钟前
2分钟前
求助的小鸟给默默惋清的求助进行了留言
3分钟前
积极便当发布了新的文献求助10
3分钟前
李健应助Sakura采纳,获得10
3分钟前
yiyixt完成签到 ,获得积分10
3分钟前
田様应助积极便当采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5091352
求助须知:如何正确求助?哪些是违规求助? 4305767
关于积分的说明 13416029
捐赠科研通 4131418
什么是DOI,文献DOI怎么找? 2263095
邀请新用户注册赠送积分活动 1266951
关于科研通互助平台的介绍 1202018