Automatic speech recognition of Portuguese phonemes using neural networks ensemble

计算机科学 语音识别 人工神经网络 人工智能 语音处理 模式识别(心理学) 过程(计算) 信号(编程语言) 聚类分析 集合(抽象数据类型) 信号处理 机器学习 数字信号处理 计算机硬件 程序设计语言 操作系统
作者
Nadia Nedjah,Alejandra D. Bonilla,Luiza de Macedo Mourelle
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:229: 120378-120378 被引量:7
标识
DOI:10.1016/j.eswa.2023.120378
摘要

The automatic speech recognition based on detection of phonemes provides advantages for online recognition of a speech represented by a sound signal. The development of a system for automatic speech recognition is multidisciplinary. It covers several areas of research, such as linguistics, signal processing and computational intelligence. In this work, the process starts with a speech signal pre-processing to extract the main features of the speech signal at a given instant of time. Inspired by the "divide and conquer" principle, we bridge the complexity gap of automatic speech recognition by devising models based on an ensemble of neural network experts, allowing to divide the huge decision space regarding speech recognition so that each expert takes care only of a delimited area of this decision space. This novel application of this strategy improves the precision, sensitivity and accuracy of the recognition process. Each included expert decides regarding each one of the pre-processed input samples. The decision set thus obtained is weighted. So, the expert with the highest weight for the output will determine the sample final classification. After that, a dynamic post-processing step, implemented as a recurrent neural network, is executed. It aims at mitigating the oscillatory effect that occurs during the recognition of classes with similar characteristics. In this work, two ensembles are investigated. The first is based on the clustering of similar phonetics classes while the second takes care of the imbalanced distribution of samples in the training set. The proposed model achieves 7.63% improvement in terms of accuracy with respect to the best so far related model for automatic speech recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得30
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
刚刚
打打应助科研通管家采纳,获得10
刚刚
xiaoyi发布了新的文献求助10
1秒前
文献嘤发布了新的文献求助30
1秒前
VDC应助天润佳苑采纳,获得30
2秒前
Natalian完成签到,获得积分10
2秒前
ljyx完成签到,获得积分10
6秒前
7秒前
不曾留步发布了新的文献求助10
8秒前
9秒前
芳凤凤凤iona完成签到,获得积分20
9秒前
10秒前
orixero应助蒸馏水采纳,获得10
11秒前
听海发布了新的文献求助10
11秒前
可爱的函函应助lanshuitai采纳,获得10
12秒前
13秒前
smile完成签到 ,获得积分10
13秒前
funny发布了新的文献求助10
13秒前
小马甲应助小丶小丶采纳,获得10
13秒前
14秒前
不配.应助阮人雄采纳,获得20
16秒前
pluto应助小李采纳,获得10
17秒前
AM发布了新的文献求助10
17秒前
19秒前
天天快乐应助鱼鱼采纳,获得10
19秒前
20秒前
望常桑完成签到,获得积分10
20秒前
杳鸢应助糟糕的铁身采纳,获得50
22秒前
852应助丰富的赛君采纳,获得10
22秒前
23秒前
24秒前
fan发布了新的文献求助10
24秒前
杳鸢应助小狗找到了我采纳,获得10
25秒前
鱼日发布了新的文献求助10
26秒前
FashionBoy应助月中天梧桐栖采纳,获得10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234164
求助须知:如何正确求助?哪些是违规求助? 2880584
关于积分的说明 8216048
捐赠科研通 2548171
什么是DOI,文献DOI怎么找? 1377575
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302