Automatic speech recognition of Portuguese phonemes using neural networks ensemble

计算机科学 语音识别 人工神经网络 人工智能 语音处理 模式识别(心理学) 过程(计算) 信号(编程语言) 聚类分析 集合(抽象数据类型) 信号处理 机器学习 数字信号处理 计算机硬件 操作系统 程序设计语言
作者
Nadia Nedjah,Alejandra D. Bonilla,Luiza de Macedo Mourelle
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:229: 120378-120378 被引量:7
标识
DOI:10.1016/j.eswa.2023.120378
摘要

The automatic speech recognition based on detection of phonemes provides advantages for online recognition of a speech represented by a sound signal. The development of a system for automatic speech recognition is multidisciplinary. It covers several areas of research, such as linguistics, signal processing and computational intelligence. In this work, the process starts with a speech signal pre-processing to extract the main features of the speech signal at a given instant of time. Inspired by the "divide and conquer" principle, we bridge the complexity gap of automatic speech recognition by devising models based on an ensemble of neural network experts, allowing to divide the huge decision space regarding speech recognition so that each expert takes care only of a delimited area of this decision space. This novel application of this strategy improves the precision, sensitivity and accuracy of the recognition process. Each included expert decides regarding each one of the pre-processed input samples. The decision set thus obtained is weighted. So, the expert with the highest weight for the output will determine the sample final classification. After that, a dynamic post-processing step, implemented as a recurrent neural network, is executed. It aims at mitigating the oscillatory effect that occurs during the recognition of classes with similar characteristics. In this work, two ensembles are investigated. The first is based on the clustering of similar phonetics classes while the second takes care of the imbalanced distribution of samples in the training set. The proposed model achieves 7.63% improvement in terms of accuracy with respect to the best so far related model for automatic speech recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕麦嫁牛奶完成签到,获得积分10
2秒前
huhujun发布了新的文献求助10
2秒前
深情安青应助细腻的深白采纳,获得10
7秒前
英姑应助lll采纳,获得10
8秒前
笑一笑发布了新的文献求助10
11秒前
汉堡包应助Ann采纳,获得10
12秒前
12秒前
悲凉的沉鱼完成签到,获得积分20
16秒前
17秒前
CY发布了新的文献求助10
18秒前
三跳发布了新的文献求助10
21秒前
酷酷的如天完成签到,获得积分10
21秒前
21秒前
青枝完成签到,获得积分10
22秒前
共享精神应助冷静飞柏采纳,获得10
22秒前
23秒前
汉堡包应助Oh采纳,获得10
23秒前
小蘑菇应助yotta采纳,获得10
24秒前
文艺谷蓝发布了新的文献求助10
28秒前
超帅的从菡完成签到 ,获得积分10
28秒前
非对称转录完成签到,获得积分10
29秒前
小辉完成签到,获得积分10
32秒前
36秒前
李健应助XFF采纳,获得10
37秒前
科研通AI2S应助三跳采纳,获得10
37秒前
zyk发布了新的文献求助10
40秒前
山山完成签到,获得积分10
42秒前
拉长的不斜完成签到 ,获得积分10
43秒前
44秒前
Hello应助自信的灰狼采纳,获得10
47秒前
48秒前
51秒前
52秒前
53秒前
1234567发布了新的文献求助10
54秒前
Liufgui应助南阳宋仲基采纳,获得10
55秒前
CY完成签到,获得积分10
56秒前
56秒前
斯文败类应助哈哈哈哈采纳,获得10
56秒前
李爱国应助葫芦娃采纳,获得10
56秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999175
求助须知:如何正确求助?哪些是违规求助? 3538547
关于积分的说明 11274517
捐赠科研通 3277430
什么是DOI,文献DOI怎么找? 1807585
邀请新用户注册赠送积分活动 883948
科研通“疑难数据库(出版商)”最低求助积分说明 810080