A deep learning solution for particle size analysis in low resolution inline microscopy images based on generative adversarial network

计算机科学 人工智能 生成语法 过程(计算) 粒子(生态学) 任务(项目管理) 显微镜 分辨率(逻辑) 深度学习 生成对抗网络 机器学习 模式识别(心理学) 光学 工程类 物理 地质学 系统工程 操作系统 海洋学
作者
Martin Vagenknecht,Jindřich Soukup,Antong Chen,Roberto Irizarry
出处
期刊:Powder Technology [Elsevier BV]
卷期号:426: 118641-118641 被引量:4
标识
DOI:10.1016/j.powtec.2023.118641
摘要

We introduce a new strategy for image analysis of inline microscopy monitoring estimate particle size distribution using deep learning. The proposed method consists of two major components: First, a novel way to generate training image-label pairs with a high-level of credibility via a Cycle-consistent Generative Adversarial Network (CycleGAN), and second, a Mask-RCNN model trained with the generated data for the particle detection task. The proposed methodology eliminates the need for manual labeling in the training phase which is a labor-intensive step and can result in labeling errors given the fuzziness of these images. We studied the application of this strategy to images acquired with a particle vision and measurement (PVM) probe. The proposed methodology was applied to images of two particle morphologies with different sizes and concentrations. Our results showed that the proposed methodology could be inexpensively used to determine qualitative trends between crystal size distributions. This trend information is a very important aspect of crystallization process monitoring and is often enough to determine what is controlling the crystallization. Therefore, we see our approach as a step in the right direction to provide insights into the particularly challenging PVM inline microscopy monitoring process without the need for offline sampling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
3秒前
幸运鹅47发布了新的文献求助10
3秒前
吉师大_科研完成签到,获得积分10
4秒前
4秒前
4秒前
langwang完成签到,获得积分10
5秒前
5秒前
7秒前
Ava应助祺Q采纳,获得10
8秒前
8秒前
糊糊发布了新的文献求助10
9秒前
小马甲应助zx采纳,获得10
10秒前
MingqingFang发布了新的文献求助20
10秒前
11秒前
11秒前
14秒前
17秒前
研友_VZG7GZ应助贺呵呵采纳,获得10
17秒前
华仔应助小居居采纳,获得10
17秒前
April_nd发布了新的文献求助10
19秒前
MingqingFang完成签到,获得积分10
19秒前
20秒前
小莫发布了新的文献求助10
20秒前
复方蛋酥卷完成签到,获得积分10
20秒前
所所应助moonlight采纳,获得10
21秒前
21秒前
宁静致远完成签到,获得积分10
21秒前
23秒前
于思枫完成签到,获得积分10
24秒前
希望天下0贩的0应助kyJYbs采纳,获得10
25秒前
25秒前
一颗苹果发布了新的文献求助10
26秒前
26秒前
打打应助皮崇知采纳,获得10
26秒前
阿巴发布了新的文献求助10
27秒前
29秒前
1751587229发布了新的文献求助10
29秒前
Kyone完成签到,获得积分10
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824