CT Radiomics-Based Nomogram for Predicting the Lateral Neck Lymph Node Metastasis in Papillary Thyroid Carcinoma: A Prospective Multicenter Study

列线图 接收机工作特性 医学 无线电技术 放射科 甲状腺癌 淋巴结 前瞻性队列研究 肿瘤科 内科学 甲状腺
作者
Luchao Dong,Han Xiao,Pengyi Yu,Wenbin Zhang,Cai Wang,Qi Sun,Fei Song,Haicheng Zhang,Guibin Zheng,Ning Mao,Xicheng Song
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (12): 3032-3046 被引量:12
标识
DOI:10.1016/j.acra.2023.03.039
摘要

This study is based on multicenter cohorts and aims to utilize computed tomography (CT) images to construct a radiomics nomogram for predicting the lateral neck lymph node (LNLN) metastasis in the papillary thyroid carcinoma (PTC) and further explore the biological basis under its prediction.In the multicenter study, 1213 lymph nodes from 409 patients with PTC who underwent CT examinations and received open surgery and lateral neck dissection were included. A prospective test cohort was used in validating the model. Radiomics features were extracted from the CT images of each patient's LNLNs. Selectkbest, maximum relevance and minimum redundancy and the least absolute shrinkage and selection operator (LASSO) algorithm were used in reducing the dimensionality of radiomics features in the training cohort. Then, a radiomics signature (Rad-score) was calculated as the sum of each feature multiplied by the nonzero coefficient from LASSO. A nomogram was generated using the clinical risk factors of the patients and Rad-score. The nomograms' performance was analyzed in terms of accuracy, sensitivity, specificity, confusion matrix, receiver operating characteristic curves, and areas under the receiver operating characteristic curve (AUCs). The clinical usefulness of the nomogram was evaluated by decision curve analysis. Moreover, three radiologists with different working experiences and nomogram were compared to one another. Whole transcriptomics sequencing was performed in 14 tumor samples; the correlation of biological functions and high and low LNLN samples predicted by the nomogram was further investigated.A total of 29 radiomics features were used in constructing the Rad-score. Rad-score and clinical risk factors (age, tumor diameter, location and number of suspected tumors) compose the nomogram. The nomogram exhibited good discrimination performance of the nomogram for predicting LNLN metastasis in the training cohort (AUC, 0.866), internal test cohort (0.845), external test cohort (0.725), and prospective test cohort (0.808) and showed diagnostic capability comparable to senior radiologists, significantly outperforming junior radiologists (p < 0.05). Functional enrichment analysis suggested that the nomogram can reflect the ribosome-related structures of cytoplasmic translation in patients with PTC.Our radiomics nomogram provides a noninvasive method that incorporates radiomics features and clinical risk factors for predicting LNLN metastasis in patients with PTC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃花源的瓶起子完成签到 ,获得积分10
刚刚
1秒前
科研通AI6应助tao采纳,获得10
3秒前
MMMM完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
9秒前
Lrcx完成签到 ,获得积分10
10秒前
111完成签到 ,获得积分10
13秒前
Scheduling完成签到 ,获得积分10
14秒前
标致小翠完成签到,获得积分10
14秒前
简单花花完成签到,获得积分10
16秒前
19秒前
jianghs发布了新的文献求助10
22秒前
星先生完成签到 ,获得积分10
24秒前
hhh2018687完成签到,获得积分10
25秒前
jianghs完成签到,获得积分10
30秒前
小苏发布了新的文献求助10
31秒前
32秒前
xinxinqi完成签到 ,获得积分10
32秒前
38秒前
吉祥高趙完成签到 ,获得积分10
38秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
41秒前
BHI完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
42秒前
饱满的荧完成签到 ,获得积分10
44秒前
幸福妙柏完成签到 ,获得积分10
45秒前
梅特卡夫完成签到,获得积分10
46秒前
精明寒松完成签到 ,获得积分10
48秒前
57秒前
Allen完成签到,获得积分10
58秒前
laber应助科研通管家采纳,获得50
59秒前
正己化人应助科研通管家采纳,获得10
59秒前
BowieHuang应助科研通管家采纳,获得10
59秒前
59秒前
strawberry完成签到,获得积分10
59秒前
小苏完成签到 ,获得积分10
1分钟前
叁月二完成签到 ,获得积分10
1分钟前
TH完成签到 ,获得积分10
1分钟前
1分钟前
笑笑完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685708
关于积分的说明 14838825
捐赠科研通 4673854
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471067