人工智能
计算机科学
机器学习
模式识别(心理学)
计算机视觉
对象(语法)
目标检测
作者
Fang Wan,Qixiang Ye,Tianning Yuan,Songcen Xu,Jianzhuang Liu,Xiangyang Ji,Qingming Huang
标识
DOI:10.1109/tpami.2023.3277738
摘要
Despite the substantial progress of active learning for image recognition, there lacks a systematic investigation of instance-level active learning for object detection. In this paper, we propose to unify instance uncertainty calculation with image uncertainty estimation for informative image selection, creating a multiple instance differentiation learning (MIDL) method for instance-level active learning. MIDL consists of a classifier prediction differentiation module and a multiple instance differentiation module. The former leverages two adversarial instance classifiers trained on the labeled and unlabeled sets to estimate instance uncertainty of the unlabeled set. The latter treats unlabeled images as instance bags and re-estimates image-instance uncertainty using the instance classification model in a multiple instance learning fashion. Through weighting the instance uncertainty using instance class probability and instance objectness probability under the total probability formula, MIDL unifies the image uncertainty with instance uncertainty in the Bayesian theory framework. Extensive experiments validate that MIDL sets a solid baseline for instance-level active learning. On commonly used object detection datasets, it outperforms other state-of-the-art methods by significant margins, particularly when the labeled sets are small.
科研通智能强力驱动
Strongly Powered by AbleSci AI