SeMask-Mask2Former: A Semantic Segmentation Model for High Resolution Remote Sensing Images

计算机科学 分割 人工智能 卷积神经网络 变压器 像素 遥感 解析 高分辨率 图像分辨率 模式识别(心理学) 计算机视觉 地理 物理 量子力学 电压
作者
Yicheng Qiao,Wei Liu,Bin Liang,Pengyun Wang,Haopeng Zhang,Junli Yang
出处
期刊:IEEE Aerospace Conference 卷期号:: 1-6 被引量:2
标识
DOI:10.1109/aero55745.2023.10115761
摘要

With the development of remote sensing, semantic segmentation of high-resolution remote sensing images (RSIs) is increasingly essential. At the same time, the characteristics of objects in RSIs, such as large size, variation in object scales, and complex details, make it necessary to capture both long-range context and local information. There are some methods such as Fully Convolutional Networks (FCN) and Pyramid Scene Parsing Network (PSPNet) lack the ability to capture long-range dependencies, due to the limited receptive field of Convolutional Neural Network (CNN). However, the self-attention mechanism to capture the correlation between pixels in Transformer models has remarkable capability in capturing long-range context. One of the most outstanding Transformer models is the Masked-attention Mask Transformer (Mask2Former) which adopts the mask classification method. We propose a model SeMask-Mask2Former with boundary loss. Semantically Masked (Se-Mask) is the model's backbone and Mask2Former is the decoder. Concretely, the mask classification that generates one or even more masks for specific categories to perform the elaborate segmentation is especially suitable for handling the characteristic of large within-class and small inter-class variance of RSIs. Above all, extensive experimental results show that SeMask-Mask2Former obtains better results in semantic segmentation of high-resolution RSIs on the ISPRS Potsdam dataset compared to CNN-based methods and other state-of-the-art transformer-based methods. Extensive ablation studies conducted on the Potsdam dataset verifies the contribution of each component or optimization strategy in SeMask-Mask2Former.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缪伟发布了新的文献求助10
刚刚
DragonDoorC发布了新的文献求助10
1秒前
打打应助wang5945采纳,获得10
2秒前
2秒前
NexusExplorer应助温暖半芹采纳,获得10
3秒前
3秒前
7秒前
搞科研的小李同学完成签到 ,获得积分10
8秒前
wanci应助Notorious采纳,获得10
8秒前
zinc发布了新的文献求助10
10秒前
12秒前
12秒前
13秒前
13秒前
Lis完成签到,获得积分10
14秒前
Lis发布了新的文献求助10
17秒前
18秒前
怕黑的砖家完成签到,获得积分10
19秒前
温暖半芹发布了新的文献求助10
19秒前
19秒前
20秒前
高沅完成签到,获得积分10
21秒前
21秒前
深情安青应助DH采纳,获得10
23秒前
24秒前
耍酷依玉发布了新的文献求助10
25秒前
25秒前
在水一方应助淡定的达达采纳,获得10
27秒前
Ddnematode发布了新的文献求助10
27秒前
28秒前
28秒前
32秒前
大佬发布了新的文献求助10
32秒前
33秒前
Ddnematode完成签到,获得积分20
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
CipherSage应助科研通管家采纳,获得10
37秒前
乐乐应助科研通管家采纳,获得10
37秒前
共享精神应助科研通管家采纳,获得10
37秒前
星辰大海应助科研通管家采纳,获得20
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316704
求助须知:如何正确求助?哪些是违规求助? 2948473
关于积分的说明 8540804
捐赠科研通 2624359
什么是DOI,文献DOI怎么找? 1436100
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724