SeMask-Mask2Former: A Semantic Segmentation Model for High Resolution Remote Sensing Images

计算机科学 分割 人工智能 卷积神经网络 变压器 像素 遥感 解析 高分辨率 图像分辨率 模式识别(心理学) 计算机视觉 地理 物理 量子力学 电压
作者
Yicheng Qiao,Wei Liu,Bin Liang,Pengyun Wang,Haopeng Zhang,Junli Yang
出处
期刊:IEEE Aerospace Conference 卷期号:: 1-6 被引量:2
标识
DOI:10.1109/aero55745.2023.10115761
摘要

With the development of remote sensing, semantic segmentation of high-resolution remote sensing images (RSIs) is increasingly essential. At the same time, the characteristics of objects in RSIs, such as large size, variation in object scales, and complex details, make it necessary to capture both long-range context and local information. There are some methods such as Fully Convolutional Networks (FCN) and Pyramid Scene Parsing Network (PSPNet) lack the ability to capture long-range dependencies, due to the limited receptive field of Convolutional Neural Network (CNN). However, the self-attention mechanism to capture the correlation between pixels in Transformer models has remarkable capability in capturing long-range context. One of the most outstanding Transformer models is the Masked-attention Mask Transformer (Mask2Former) which adopts the mask classification method. We propose a model SeMask-Mask2Former with boundary loss. Semantically Masked (Se-Mask) is the model's backbone and Mask2Former is the decoder. Concretely, the mask classification that generates one or even more masks for specific categories to perform the elaborate segmentation is especially suitable for handling the characteristic of large within-class and small inter-class variance of RSIs. Above all, extensive experimental results show that SeMask-Mask2Former obtains better results in semantic segmentation of high-resolution RSIs on the ISPRS Potsdam dataset compared to CNN-based methods and other state-of-the-art transformer-based methods. Extensive ablation studies conducted on the Potsdam dataset verifies the contribution of each component or optimization strategy in SeMask-Mask2Former.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
柔弱凡松完成签到,获得积分10
1秒前
BB完成签到,获得积分10
1秒前
Lin发布了新的文献求助10
1秒前
1秒前
内向音响完成签到,获得积分20
2秒前
科研小白完成签到,获得积分10
2秒前
刘芸芸完成签到,获得积分10
2秒前
伍贰肆完成签到,获得积分10
3秒前
phil发布了新的文献求助10
3秒前
福娃发布了新的文献求助10
3秒前
3秒前
xyz完成签到,获得积分10
4秒前
MJQ完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
张潇赫完成签到,获得积分10
4秒前
HJJHJH发布了新的文献求助50
5秒前
6秒前
儒雅的秋珊完成签到,获得积分10
6秒前
善学以致用应助BWZ采纳,获得10
6秒前
Meiyu发布了新的文献求助10
6秒前
_hhhjhhh完成签到,获得积分10
7秒前
91发布了新的文献求助10
7秒前
Li发布了新的文献求助10
8秒前
8秒前
hn发布了新的文献求助20
8秒前
zhou发布了新的文献求助10
8秒前
lyejxusgh完成签到,获得积分10
9秒前
赖道之发布了新的文献求助10
9秒前
张鱼小丸子完成签到,获得积分10
9秒前
无花果应助下课了吧采纳,获得10
9秒前
加肥猫1992完成签到,获得积分10
9秒前
zhogwe完成签到,获得积分10
10秒前
Zachary完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762