亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformer-based Deep Neural Network for Breast Cancer Classification on Digital Breast Tomosynthesis Images

接收机工作特性 医学 乳腺癌 人工智能 人工神经网络 变压器 模式识别(心理学) 乳腺摄影术 技术 背景(考古学) 核医学 计算机科学 癌症 内科学 工程类 古生物学 电压 电气工程 生物
作者
Weonsuk Lee,Hyeonsoo Lee,Hyunjae Lee,Eunkyung Park,Hyeonseob Nam,Thijs Kooi
出处
期刊:Radiology [Radiological Society of North America]
卷期号:5 (3) 被引量:1
标识
DOI:10.1148/ryai.220159
摘要

Purpose To develop an efficient deep neural network model that incorporates context from neighboring image sections to detect breast cancer on digital breast tomosynthesis (DBT) images. Materials and Methods The authors adopted a transformer architecture that analyzes neighboring sections of the DBT stack. The proposed method was compared with two baselines: an architecture based on three-dimensional (3D) convolutions and a two-dimensional model that analyzes each section individually. The models were trained with 5174 four-view DBT studies, validated with 1000 four-view DBT studies, and tested on 655 four-view DBT studies, which were retrospectively collected from nine institutions in the United States through an external entity. Methods were compared using area under the receiver operating characteristic curve (AUC), sensitivity at a fixed specificity, and specificity at a fixed sensitivity. Results On the test set of 655 DBT studies, both 3D models showed higher classification performance than did the per-section baseline model. The proposed transformer-based model showed a significant increase in AUC (0.88 vs 0.91, P = .002), sensitivity (81.0% vs 87.7%, P = .006), and specificity (80.5% vs 86.4%, P < .001) at clinically relevant operating points when compared with the single-DBT-section baseline. The transformer-based model used only 25% of the number of floating-point operations per second used by the 3D convolution model while demonstrating similar classification performance. Conclusion A transformer-based deep neural network using data from neighboring sections improved breast cancer classification performance compared with a per-section baseline model and was more efficient than a model using 3D convolutions. Keywords: Breast, Tomosynthesis, Diagnosis, Supervised Learning, Convolutional Neural Network (CNN), Digital Breast Tomosynthesis, Breast Cancer, Deep Neural Networks, Transformers Supplemental material is available for this article. © RSNA, 2023

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助dawn采纳,获得10
5秒前
15秒前
dawn完成签到,获得积分20
18秒前
dawn发布了新的文献求助10
21秒前
43秒前
汉堡包应助Fluoxtine采纳,获得10
50秒前
xixi发布了新的文献求助10
50秒前
丘比特应助科研通管家采纳,获得10
51秒前
FashionBoy应助科研通管家采纳,获得10
51秒前
汉堡包应助科研通管家采纳,获得10
51秒前
慕青应助科研通管家采纳,获得10
51秒前
kuoping完成签到,获得积分0
54秒前
59秒前
机灵自中完成签到,获得积分10
1分钟前
Stellarshi517发布了新的文献求助20
1分钟前
1分钟前
科研通AI6.1应助xixi采纳,获得10
1分钟前
lyw发布了新的文献求助10
1分钟前
田様应助Stellarshi517采纳,获得20
1分钟前
1分钟前
kuiuLinvk发布了新的文献求助10
1分钟前
2分钟前
kuiuLinvk完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
采薇发布了新的文献求助10
2分钟前
2分钟前
科研通AI6.1应助小博采纳,获得10
2分钟前
归尘发布了新的文献求助10
2分钟前
2分钟前
彭于晏应助凛玖niro采纳,获得10
2分钟前
Stellarshi517发布了新的文献求助20
2分钟前
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
2分钟前
lzmcsp发布了新的文献求助10
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577