Transformer-based Deep Neural Network for Breast Cancer Classification on Digital Breast Tomosynthesis Images

接收机工作特性 医学 乳腺癌 人工智能 人工神经网络 变压器 模式识别(心理学) 乳腺摄影术 技术 背景(考古学) 核医学 计算机科学 癌症 内科学 工程类 古生物学 电压 电气工程 生物
作者
Weonsuk Lee,Hyeonsoo Lee,Hyunjae Lee,Eunkyung Park,Hyeonseob Nam,Thijs Kooi
出处
期刊:Radiology [Radiological Society of North America]
卷期号:5 (3) 被引量:1
标识
DOI:10.1148/ryai.220159
摘要

Purpose To develop an efficient deep neural network model that incorporates context from neighboring image sections to detect breast cancer on digital breast tomosynthesis (DBT) images. Materials and Methods The authors adopted a transformer architecture that analyzes neighboring sections of the DBT stack. The proposed method was compared with two baselines: an architecture based on three-dimensional (3D) convolutions and a two-dimensional model that analyzes each section individually. The models were trained with 5174 four-view DBT studies, validated with 1000 four-view DBT studies, and tested on 655 four-view DBT studies, which were retrospectively collected from nine institutions in the United States through an external entity. Methods were compared using area under the receiver operating characteristic curve (AUC), sensitivity at a fixed specificity, and specificity at a fixed sensitivity. Results On the test set of 655 DBT studies, both 3D models showed higher classification performance than did the per-section baseline model. The proposed transformer-based model showed a significant increase in AUC (0.88 vs 0.91, P = .002), sensitivity (81.0% vs 87.7%, P = .006), and specificity (80.5% vs 86.4%, P < .001) at clinically relevant operating points when compared with the single-DBT-section baseline. The transformer-based model used only 25% of the number of floating-point operations per second used by the 3D convolution model while demonstrating similar classification performance. Conclusion A transformer-based deep neural network using data from neighboring sections improved breast cancer classification performance compared with a per-section baseline model and was more efficient than a model using 3D convolutions. Keywords: Breast, Tomosynthesis, Diagnosis, Supervised Learning, Convolutional Neural Network (CNN), Digital Breast Tomosynthesis, Breast Cancer, Deep Neural Networks, Transformers Supplemental material is available for this article. © RSNA, 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助小高采纳,获得10
刚刚
刚刚
传奇3应助乘宝采纳,获得10
刚刚
longer发布了新的文献求助10
刚刚
心系天下完成签到 ,获得积分10
刚刚
雪婆发布了新的文献求助10
刚刚
Winks完成签到,获得积分10
1秒前
cyt9999发布了新的文献求助10
1秒前
1秒前
时尚飞阳完成签到,获得积分10
1秒前
英俊的铭应助火星上含芙采纳,获得10
2秒前
1111完成签到,获得积分10
2秒前
mmmmm驳回了Ava应助
2秒前
nanan完成签到,获得积分10
2秒前
万能图书馆应助YZzzJ采纳,获得10
3秒前
樱桃窝窝头完成签到,获得积分20
3秒前
CipherSage应助田轲采纳,获得10
3秒前
4秒前
优雅盼海完成签到,获得积分10
4秒前
咖可乐发布了新的文献求助10
4秒前
gnr2000发布了新的文献求助10
5秒前
6秒前
6秒前
Ran-HT完成签到,获得积分10
6秒前
花Cheung完成签到,获得积分10
6秒前
Ray完成签到,获得积分10
6秒前
6秒前
心灵美的宛丝完成签到,获得积分10
7秒前
7秒前
miro完成签到,获得积分10
7秒前
搬砖民工完成签到,获得积分10
8秒前
8秒前
cyt9999完成签到,获得积分10
8秒前
HIH完成签到 ,获得积分10
8秒前
yu完成签到,获得积分10
8秒前
事在人为发布了新的文献求助10
9秒前
坚强的咖啡豆完成签到,获得积分10
9秒前
9秒前
Profeto应助HM采纳,获得10
9秒前
Sonny发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582