已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transformer-based Deep Neural Network for Breast Cancer Classification on Digital Breast Tomosynthesis Images

接收机工作特性 医学 乳腺癌 人工智能 人工神经网络 变压器 模式识别(心理学) 乳腺摄影术 技术 背景(考古学) 核医学 计算机科学 癌症 内科学 工程类 古生物学 电压 电气工程 生物
作者
Weonsuk Lee,Hyeonsoo Lee,Hyunjae Lee,Eunkyung Park,Hyeonseob Nam,Thijs Kooi
出处
期刊:Radiology [Radiological Society of North America]
卷期号:5 (3) 被引量:1
标识
DOI:10.1148/ryai.220159
摘要

Purpose To develop an efficient deep neural network model that incorporates context from neighboring image sections to detect breast cancer on digital breast tomosynthesis (DBT) images. Materials and Methods The authors adopted a transformer architecture that analyzes neighboring sections of the DBT stack. The proposed method was compared with two baselines: an architecture based on three-dimensional (3D) convolutions and a two-dimensional model that analyzes each section individually. The models were trained with 5174 four-view DBT studies, validated with 1000 four-view DBT studies, and tested on 655 four-view DBT studies, which were retrospectively collected from nine institutions in the United States through an external entity. Methods were compared using area under the receiver operating characteristic curve (AUC), sensitivity at a fixed specificity, and specificity at a fixed sensitivity. Results On the test set of 655 DBT studies, both 3D models showed higher classification performance than did the per-section baseline model. The proposed transformer-based model showed a significant increase in AUC (0.88 vs 0.91, P = .002), sensitivity (81.0% vs 87.7%, P = .006), and specificity (80.5% vs 86.4%, P < .001) at clinically relevant operating points when compared with the single-DBT-section baseline. The transformer-based model used only 25% of the number of floating-point operations per second used by the 3D convolution model while demonstrating similar classification performance. Conclusion A transformer-based deep neural network using data from neighboring sections improved breast cancer classification performance compared with a per-section baseline model and was more efficient than a model using 3D convolutions. Keywords: Breast, Tomosynthesis, Diagnosis, Supervised Learning, Convolutional Neural Network (CNN), Digital Breast Tomosynthesis, Breast Cancer, Deep Neural Networks, Transformers Supplemental material is available for this article. © RSNA, 2023

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹什猫完成签到,获得积分20
2秒前
十六完成签到,获得积分10
3秒前
孙涛完成签到,获得积分10
3秒前
3秒前
孙涛发布了新的文献求助10
6秒前
11秒前
tjnksy完成签到,获得积分10
12秒前
天天快乐应助Sybsy采纳,获得10
13秒前
乐乐应助孙涛采纳,获得10
14秒前
17秒前
宁海发布了新的文献求助10
18秒前
大龙哥886应助GY97采纳,获得10
20秒前
gxmu6322完成签到,获得积分10
25秒前
lfl完成签到,获得积分20
28秒前
29秒前
大学生完成签到 ,获得积分10
29秒前
宁海完成签到,获得积分10
31秒前
32秒前
吴兰田完成签到,获得积分10
32秒前
sadascaqwqw发布了新的文献求助10
32秒前
null应助哲别采纳,获得10
33秒前
lfl发布了新的文献求助10
33秒前
忧郁的煎蛋完成签到 ,获得积分10
35秒前
yhgz完成签到,获得积分10
37秒前
哈哈哈发布了新的文献求助10
37秒前
LUYI完成签到,获得积分10
40秒前
科研通AI6应助lfl采纳,获得10
43秒前
温柔发卡完成签到 ,获得积分10
43秒前
万能图书馆应助Fng11采纳,获得10
46秒前
欧阳慧玲完成签到 ,获得积分10
48秒前
打打应助哈哈哈采纳,获得10
50秒前
柒年啵啵完成签到 ,获得积分10
52秒前
53秒前
聪明醉薇发布了新的文献求助30
55秒前
XDSH完成签到 ,获得积分10
56秒前
kqhys完成签到,获得积分10
56秒前
57秒前
春风完成签到 ,获得积分10
1分钟前
李健的粉丝团团长应助皮s采纳,获得10
1分钟前
小厂科研民工完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581