Crack Detection of Asphalt Concrete Using Combined Fracture Mechanics and Digital Image Correlation

数字图像相关 不连续性分类 断裂力学 开裂 断裂(地质) 数字图像 材料科学 沥青混凝土 结构工程 流离失所(心理学) 计算机科学 沥青 图像处理 工程类 数学 复合材料 图像(数学) 人工智能 心理学 数学分析 心理治疗师
作者
Zehui Zhu,Imad L. Al-Qadi
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (3) 被引量:5
标识
DOI:10.1061/jpeodx.pveng-1249
摘要

Cracking is a common failure mode in asphalt concrete (AC) pavements. Many tests have been developed to characterize the fracture behavior of AC. Accurate crack detection during testing is crucial to describe AC fracture behavior. This paper proposes a framework to detect surface cracks in AC specimens using two-dimensional digital image correlation (DIC). Two significant drawbacks in previous research in this field were addressed. First, a multiseed incremental reliability-guided DIC was proposed to solve the decorrelation issue due to large deformation and discontinuities. The method was validated using synthetic deformed images. A correctly implemented analysis could accurately measure strains up to 450%, even with significant discontinuities (cracks) present in the deformed image. Second, a robust method was developed to detect cracks based on displacement fields. The proposed method uses critical crack tip opening displacement (δc) to define the onset of cleavage fracture. The proposed method relies on well-developed fracture mechanics theory. The proposed threshold δc has a physical meaning and can be easily determined from DIC measurement. The method was validated using an extended finite-element model. The framework was implemented to measure the crack-propagation rate while conducting the Illinois-flexibility index test on two AC mixes. The calculated rates could distinguish mixes based on their cracking potential. The proposed framework could be applied to characterize AC cracking phenomenon, evaluate its fracture properties, assess asphalt mixture testing protocols, and develop theoretical models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
riddle完成签到,获得积分10
1秒前
yry发布了新的文献求助10
2秒前
3秒前
酷波er应助Sandstorm采纳,获得10
4秒前
Renly完成签到,获得积分10
5秒前
在水一方应助zzz采纳,获得10
6秒前
zad完成签到,获得积分10
7秒前
科研通AI2S应助Ji采纳,获得10
7秒前
8秒前
华仔应助科研通管家采纳,获得10
10秒前
chen应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
NexusExplorer应助yry采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
谦让的含海完成签到,获得积分10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
mhl11应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
传奇3应助zbx采纳,获得10
12秒前
屈苞络发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助小琦无敌采纳,获得10
12秒前
WM应助小琦无敌采纳,获得10
12秒前
13秒前
伯赏孱发布了新的文献求助10
13秒前
14秒前
小女完成签到,获得积分10
14秒前
15秒前
淡淡紫山完成签到,获得积分10
16秒前
Akaashi发布了新的文献求助10
16秒前
16秒前
bkagyin应助旧梦采纳,获得10
17秒前
小女发布了新的文献求助10
17秒前
18秒前
充电宝应助嘻嘻采纳,获得30
19秒前
星辰大海应助小健健采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358111
求助须知:如何正确求助?哪些是违规求助? 2981275
关于积分的说明 8698559
捐赠科研通 2662887
什么是DOI,文献DOI怎么找? 1458154
科研通“疑难数据库(出版商)”最低求助积分说明 675060
邀请新用户注册赠送积分活动 666078