Forecasting of energy efficiency in buildings using multilayer perceptron regressor with waterwheel plant algorithm hyperparameter

超参数 感知器 算法 能量(信号处理) 多层感知器 机器学习 人工智能 计算机科学 材料科学 数学 统计 人工神经网络
作者
Amal H. Alharbi,Doaa Sami Khafaga,Ahmed Mohamed Zaki,El-Sayed M. El-kenawy,Abdelhameed Ibrahim‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬,Abdelaziz A. Abdelhamid,Marwa M. Eid,M. El-Said,Nima Khodadadi,Laith Abualigah,Mohammed A. Saeed
出处
期刊:Frontiers in Energy Research [Frontiers Media]
卷期号:12 被引量:3
标识
DOI:10.3389/fenrg.2024.1393794
摘要

Energy consumption in buildings is gradually increasing and accounts for around forty percent of the total energy consumption. Forecasting the heating and cooling loads of a building during the initial phase of the design process in order to identify optimal solutions among various designs is of utmost importance. This is also true during the operation phase of the structure after it has been completed in order to ensure that energy efficiency is maintained. The aim of this paper is to create and develop a Multilayer Perceptron Regressor (MLPRegressor) model for the purpose of forecasting the heating and cooling loads of a building. The proposed model is based on automated hyperparameter optimization using Waterwheel Plant Algorithm The model was based on a dataset that described the energy performance of the structure. There are a number of important characteristics that are considered to be input variables. These include relative compactness, roof area, overall height, surface area, glazing area, wall area, glazing area distribution of a structure, and orientation. On the other hand, the variables that are considered to be output variables are the heating and cooling loads of the building. A total of 768 residential buildings were included in the dataset that was utilized for training purposes. Following the training and regression of the model, the most significant parameters that influence heating load and cooling load have been identified, and the WWPA-MLPRegressor performed well in terms of different metrices variables and fitted time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蚊子发布了新的文献求助10
刚刚
刚刚
神明发布了新的文献求助10
1秒前
善良的背包完成签到,获得积分10
2秒前
隆东强发布了新的文献求助10
2秒前
4秒前
4秒前
fwz发布了新的文献求助10
4秒前
5秒前
小蚊子完成签到,获得积分10
6秒前
科研通AI5应助神明采纳,获得10
6秒前
搜集达人应助老王爱学习采纳,获得10
6秒前
liuke完成签到,获得积分10
7秒前
我是老大应助wuaaaaa_L采纳,获得10
7秒前
呼呼呼完成签到,获得积分10
7秒前
8秒前
apu发布了新的文献求助10
9秒前
zyr应助老头采纳,获得20
11秒前
科研通AI5应助无辜的大雁采纳,获得10
11秒前
自由的面包完成签到,获得积分10
12秒前
梨花雨凉完成签到 ,获得积分10
12秒前
inzaghi完成签到,获得积分10
14秒前
阿布发布了新的文献求助30
14秒前
16秒前
1234发布了新的文献求助10
16秒前
16秒前
善学以致用应助SW采纳,获得10
16秒前
沸羊羊完成签到,获得积分10
17秒前
19秒前
19秒前
蕾蕾发布了新的文献求助10
21秒前
我是zpb发布了新的文献求助10
22秒前
阿发完成签到,获得积分10
22秒前
qiong完成签到,获得积分20
24秒前
万能图书馆应助ZZ采纳,获得10
24秒前
24秒前
王硕磊完成签到,获得积分10
24秒前
咕咕噜噜发布了新的文献求助10
26秒前
fwz完成签到,获得积分10
27秒前
SW完成签到,获得积分10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
The Finite Element Method Its Basis and Fundamentals 2000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752811
求助须知:如何正确求助?哪些是违规求助? 3296371
关于积分的说明 10093570
捐赠科研通 3011229
什么是DOI,文献DOI怎么找? 1653678
邀请新用户注册赠送积分活动 788339
科研通“疑难数据库(出版商)”最低求助积分说明 752809