Automatically Extracting and Utilizing EEG Channel Importance Based on Graph Convolutional Network for Emotion Recognition

计算机科学 脑电图 人工智能 卷积神经网络 图形 模式识别(心理学) 特征提取 自然语言处理 语音识别 理论计算机科学 心理学 神经科学
作者
Kun Yang,Zhenning Yao,Keze Zhang,Jing Xu,Li Zhu,Shichao Cheng,Jianhai Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4588-4598
标识
DOI:10.1109/jbhi.2024.3404146
摘要

Graph convolutional network (GCN) based on the brain network has been widely used for EEG emotion recognition. However, most studies train their models directly without considering network dimensionality reduction beforehand. In fact, some nodes and edges are invalid information or even interference information for the current task. It is necessary to reduce the network dimension and extract the core network. To address the problem of extracting and utilizing the core network, a core network extraction model (CWGCN) based on channel weighting and graph convolutional network and a graph convolutional network model (CCSR-GCN) based on channel convolution and style-based recalibration for emotion recognition have been proposed. The CWGCN model automatically extracts the core network and the channel importance parameter in a data-driven manner. The CCSR-GCN model innovatively uses the output information of the CWGCN model to identify the emotion state. The experimental results on SEED show that: (1) the core network extraction can help improve the performance of the GCN model; (2) the models of CWGCN and CCSR-GCN achieve better results than the currently popular methods. The idea and its implementation in this paper provide a novel and successful perspective for the application of GCN in brain network analysis of other specific tasks. The code is available at https://github.com/ykhdu/CWGCN-CCSR-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Teddyfeeder完成签到,获得积分10
1秒前
1秒前
科研通AI6应助aaaaaYue采纳,获得10
1秒前
JamesPei应助linkman采纳,获得10
1秒前
2秒前
tang完成签到,获得积分20
3秒前
3秒前
4秒前
BGWZSG完成签到,获得积分20
4秒前
4秒前
在水一方应助haha采纳,获得10
4秒前
4秒前
5秒前
Lv发布了新的文献求助10
5秒前
5秒前
xiaozhou完成签到,获得积分10
5秒前
6秒前
积极的笙发布了新的文献求助10
6秒前
sing发布了新的文献求助10
7秒前
WAHAHAoo发布了新的文献求助10
7秒前
8秒前
8秒前
livian完成签到,获得积分10
8秒前
8秒前
9秒前
悦耳的襄发布了新的文献求助10
9秒前
NE555完成签到,获得积分10
9秒前
10秒前
DUhn发布了新的文献求助10
10秒前
风清扬应助王铭轩采纳,获得10
10秒前
舒心的冷安完成签到,获得积分10
10秒前
fyjlfy发布了新的文献求助10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
Wannnnqi发布了新的文献求助10
11秒前
糖小白完成签到,获得积分10
12秒前
fff发布了新的文献求助10
12秒前
Danboard发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914