Automatically Extracting and Utilizing EEG Channel Importance Based on Graph Convolutional Network for Emotion Recognition

计算机科学 脑电图 人工智能 卷积神经网络 图形 模式识别(心理学) 特征提取 自然语言处理 语音识别 理论计算机科学 心理学 神经科学
作者
Kun Yang,Zhenning Yao,Keze Zhang,Jing Xu,Li Zhu,Shichao Cheng,Jianhai Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4588-4598
标识
DOI:10.1109/jbhi.2024.3404146
摘要

Graph convolutional network (GCN) based on the brain network has been widely used for EEG emotion recognition. However, most studies train their models directly without considering network dimensionality reduction beforehand. In fact, some nodes and edges are invalid information or even interference information for the current task. It is necessary to reduce the network dimension and extract the core network. To address the problem of extracting and utilizing the core network, a core network extraction model (CWGCN) based on channel weighting and graph convolutional network and a graph convolutional network model (CCSR-GCN) based on channel convolution and style-based recalibration for emotion recognition have been proposed. The CWGCN model automatically extracts the core network and the channel importance parameter in a data-driven manner. The CCSR-GCN model innovatively uses the output information of the CWGCN model to identify the emotion state. The experimental results on SEED show that: (1) the core network extraction can help improve the performance of the GCN model; (2) the models of CWGCN and CCSR-GCN achieve better results than the currently popular methods. The idea and its implementation in this paper provide a novel and successful perspective for the application of GCN in brain network analysis of other specific tasks. The code is available at https://github.com/ykhdu/CWGCN-CCSR-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助世界尽头采纳,获得10
刚刚
echolan发布了新的文献求助10
1秒前
SID完成签到,获得积分10
1秒前
中九完成签到 ,获得积分10
1秒前
Rrr完成签到,获得积分10
1秒前
hehuan0520完成签到,获得积分10
1秒前
1秒前
打打应助chinning采纳,获得10
1秒前
桐桐应助wangyanyan采纳,获得10
2秒前
2秒前
zzznznnn发布了新的文献求助10
2秒前
jogrgr发布了新的文献求助10
3秒前
sun发布了新的文献求助10
3秒前
布鲁鲁发布了新的文献求助10
3秒前
自信晟睿完成签到,获得积分10
3秒前
酷波er应助哒哒采纳,获得10
4秒前
4秒前
沉默乐荷完成签到,获得积分10
4秒前
rstorz应助皮尤尤采纳,获得10
4秒前
sweetbearm应助小离采纳,获得10
4秒前
何青岚关注了科研通微信公众号
5秒前
doudou完成签到,获得积分20
5秒前
李健的小迷弟应助潦草采纳,获得10
5秒前
6秒前
6秒前
6秒前
柒八染完成签到,获得积分10
6秒前
wsljc134完成签到,获得积分20
6秒前
7秒前
善良香岚完成签到,获得积分20
7秒前
7秒前
7秒前
123发布了新的文献求助10
7秒前
7秒前
不安太阳完成签到,获得积分10
8秒前
t_suo完成签到,获得积分10
8秒前
bioinforiver完成签到,获得积分10
8秒前
乐观跳跳糖完成签到,获得积分10
8秒前
8秒前
WxChen发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759