Evaluating the performance of airborne and spaceborne lidar for mapping biomass in the United States' largest dry woodland ecosystem

遥感 林地 环境科学 激光雷达 生物量(生态学) 生态系统 地理 地质学 生态学 海洋学 生物
作者
Michael J. Campbell,Jessie F. Eastburn,Philip E. Dennison,Jody C. Vogeler,Atticus Stovall
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:308: 114196-114196
标识
DOI:10.1016/j.rse.2024.114196
摘要

The ability of remote sensing to accurately quantify live aboveground biomass (AGB) varies by ecosystem. Given their important role in global carbon dynamics, deriving accurate, spatially and temporally explicit AGB estimates in dryland ecosystems is uniquely valuable. However, the shorter stature and sparser cover of vegetation in dryland ecosystems makes remote sensing of AGB particularly challenging. The United States' largest dry woodland ecosystem is that of piñon-juniper (PJ) woodlands, a diverse and widespread vegetation type whose AGB has not been mapped in a comprehensive and targeted manner using lidar. In this study, we investigated airborne and spaceborne lidar for their respective AGB estimation abilities in PJ woodlands. Using data from 177 field plots distributed over 18 sites capturing the spatial and ecological variability within the full range of PJ in the US, we compared three different modeling approaches: (1) using field-measured AGB to train and validate models built from airborne laser scanning (ALS) data (Field→ALS); (2) using field-measured AGB to train and validate models built from simulated Global Ecosystem Dynamics Investigation (GEDI) waveforms (Field→GEDIsim); and (3) using ALS-modeled AGB to train and validate models built from real GEDI waveforms (ALS→GEDIreal). In doing so, we also compared three different ensemble decision tree-based machine learning algorithms: (1) cubist; (2) random forests; and (3) extreme gradient boosting (XGBoost). The Field→ALS models performed very well, with a mean R2 of 0.69 and nRMSE of 36.91% across the three machine learning algorithms. The Field→GEDIsim models saw decreased performance (R2mean = 0.50; nRMSEmean = 47.47%), likely due to the simulated waveforms' inability to sufficiently capture vegetation structure in the short, sparse woodlands. The ALS→GEDIreal had the lowest mean R2 (0.36), but relatively constrained predictions yielded similar mean nRMSE to Field→GEDIsim (46.19%), though that is without accounting for the propagation of error resulting from being trained and validated on modeled predictions rather than measured values. Cubist's ability to extrapolate proved helpful in the presence of stronger predictors (i.e., Field→ALS), enhancing prediction of extreme AGB values not represented in the reference data. Conversely, when predictive capacity was comparably low (i.e., Field→GEDIsim and ALS→GEDIreal), random forests and XGBoost's inability to extrapolate yielded lower predictive error. We compared our results to the GEDI Level 4A (L4A) footprint-level AGB product, which revealed that L4A tends to significantly underestimate AGB in PJ woodlands and fails to capture variability on the low end of the AGB spectrum (0–100 Mg/ha). These results demonstrate promise for broad-scale, lidar-driven PJ and other dry woodland ecosystem AGB mapping, and suggest that with more ecosystem-tailored models, near-global products such as L4A could be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Struggle完成签到 ,获得积分10
刚刚
刚刚
秦兴虎完成签到,获得积分10
1秒前
Drew11完成签到,获得积分10
1秒前
风趣青槐完成签到,获得积分10
3秒前
科隆龙完成签到,获得积分10
4秒前
4秒前
饱满一手完成签到 ,获得积分10
4秒前
99完成签到,获得积分10
6秒前
枕星发布了新的文献求助10
6秒前
drlq2022完成签到,获得积分10
7秒前
王山完成签到,获得积分10
8秒前
自觉寒梦完成签到,获得积分10
9秒前
ding应助缥缈一刀采纳,获得10
9秒前
pakiorder发布了新的文献求助10
9秒前
专心搞学术完成签到,获得积分10
9秒前
bkagyin应助zzcherished采纳,获得10
11秒前
你怎么这么可爱啊完成签到,获得积分10
11秒前
12秒前
研友_Lmg1gZ完成签到,获得积分10
12秒前
Crazyer完成签到,获得积分10
12秒前
Shuey完成签到,获得积分10
13秒前
XXXXH完成签到,获得积分10
13秒前
Z可完成签到 ,获得积分10
14秒前
momo123完成签到 ,获得积分10
14秒前
高兴的书竹完成签到 ,获得积分10
15秒前
mp5完成签到,获得积分10
16秒前
薯条一克完成签到 ,获得积分10
16秒前
zzcherished完成签到,获得积分10
17秒前
阿军完成签到,获得积分10
17秒前
糊涂的皮皮虾完成签到 ,获得积分10
18秒前
big ben完成签到 ,获得积分10
18秒前
可以的完成签到,获得积分10
19秒前
小瓶盖完成签到 ,获得积分10
19秒前
21秒前
辛勤的泽洋完成签到 ,获得积分10
23秒前
YXHTCM完成签到,获得积分10
25秒前
陈艺鹏完成签到,获得积分10
27秒前
nuistd完成签到,获得积分10
27秒前
大陆完成签到,获得积分0
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029