Evaluating the performance of airborne and spaceborne lidar for mapping biomass in the United States' largest dry woodland ecosystem

遥感 林地 环境科学 激光雷达 生物量(生态学) 生态系统 地理 地质学 生态学 海洋学 生物
作者
Michael J. Campbell,Jessie F. Eastburn,Philip E. Dennison,Jody C. Vogeler,Atticus Stovall
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:308: 114196-114196
标识
DOI:10.1016/j.rse.2024.114196
摘要

The ability of remote sensing to accurately quantify live aboveground biomass (AGB) varies by ecosystem. Given their important role in global carbon dynamics, deriving accurate, spatially and temporally explicit AGB estimates in dryland ecosystems is uniquely valuable. However, the shorter stature and sparser cover of vegetation in dryland ecosystems makes remote sensing of AGB particularly challenging. The United States' largest dry woodland ecosystem is that of piñon-juniper (PJ) woodlands, a diverse and widespread vegetation type whose AGB has not been mapped in a comprehensive and targeted manner using lidar. In this study, we investigated airborne and spaceborne lidar for their respective AGB estimation abilities in PJ woodlands. Using data from 177 field plots distributed over 18 sites capturing the spatial and ecological variability within the full range of PJ in the US, we compared three different modeling approaches: (1) using field-measured AGB to train and validate models built from airborne laser scanning (ALS) data (Field→ALS); (2) using field-measured AGB to train and validate models built from simulated Global Ecosystem Dynamics Investigation (GEDI) waveforms (Field→GEDIsim); and (3) using ALS-modeled AGB to train and validate models built from real GEDI waveforms (ALS→GEDIreal). In doing so, we also compared three different ensemble decision tree-based machine learning algorithms: (1) cubist; (2) random forests; and (3) extreme gradient boosting (XGBoost). The Field→ALS models performed very well, with a mean R2 of 0.69 and nRMSE of 36.91% across the three machine learning algorithms. The Field→GEDIsim models saw decreased performance (R2mean = 0.50; nRMSEmean = 47.47%), likely due to the simulated waveforms' inability to sufficiently capture vegetation structure in the short, sparse woodlands. The ALS→GEDIreal had the lowest mean R2 (0.36), but relatively constrained predictions yielded similar mean nRMSE to Field→GEDIsim (46.19%), though that is without accounting for the propagation of error resulting from being trained and validated on modeled predictions rather than measured values. Cubist's ability to extrapolate proved helpful in the presence of stronger predictors (i.e., Field→ALS), enhancing prediction of extreme AGB values not represented in the reference data. Conversely, when predictive capacity was comparably low (i.e., Field→GEDIsim and ALS→GEDIreal), random forests and XGBoost's inability to extrapolate yielded lower predictive error. We compared our results to the GEDI Level 4A (L4A) footprint-level AGB product, which revealed that L4A tends to significantly underestimate AGB in PJ woodlands and fails to capture variability on the low end of the AGB spectrum (0–100 Mg/ha). These results demonstrate promise for broad-scale, lidar-driven PJ and other dry woodland ecosystem AGB mapping, and suggest that with more ecosystem-tailored models, near-global products such as L4A could be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助andyxrz采纳,获得10
刚刚
Zhang完成签到,获得积分10
刚刚
1秒前
年轻冥茗完成签到,获得积分10
1秒前
apple发布了新的文献求助10
2秒前
CarterXD完成签到,获得积分10
2秒前
紧张的友灵完成签到,获得积分10
2秒前
SciGPT应助之仔饼采纳,获得10
3秒前
liudiqiu应助追寻的易烟采纳,获得10
3秒前
Chem is try发布了新的文献求助10
3秒前
3秒前
vsoar完成签到,获得积分10
3秒前
4秒前
5秒前
GGGGGGGGGG发布了新的文献求助10
5秒前
5秒前
打打应助hhh采纳,获得10
6秒前
抓恐龙关注了科研通微信公众号
6秒前
碳点godfather完成签到,获得积分10
6秒前
ren完成签到,获得积分20
6秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
7秒前
TG_FY完成签到,获得积分10
7秒前
7秒前
hhh完成签到,获得积分10
7秒前
JamesPei应助诗轩采纳,获得10
8秒前
TT完成签到,获得积分10
9秒前
reck发布了新的文献求助10
9秒前
10秒前
DK发布了新的文献求助10
10秒前
英俊的铭应助ren采纳,获得10
10秒前
圈圈发布了新的文献求助10
10秒前
乐乱完成签到 ,获得积分10
11秒前
415484112完成签到,获得积分10
12秒前
yinyi发布了新的文献求助10
12秒前
12秒前
赵一丁完成签到,获得积分10
13秒前
成就绮琴完成签到 ,获得积分10
13秒前
Chen完成签到,获得积分10
13秒前
huanfid完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672