清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Evaluating the performance of airborne and spaceborne lidar for mapping biomass in the United States' largest dry woodland ecosystem

遥感 林地 环境科学 激光雷达 生物量(生态学) 生态系统 地理 地质学 生态学 海洋学 生物
作者
Michael J. Campbell,Jessie F. Eastburn,Philip E. Dennison,Jody C. Vogeler,Atticus Stovall
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:308: 114196-114196
标识
DOI:10.1016/j.rse.2024.114196
摘要

The ability of remote sensing to accurately quantify live aboveground biomass (AGB) varies by ecosystem. Given their important role in global carbon dynamics, deriving accurate, spatially and temporally explicit AGB estimates in dryland ecosystems is uniquely valuable. However, the shorter stature and sparser cover of vegetation in dryland ecosystems makes remote sensing of AGB particularly challenging. The United States' largest dry woodland ecosystem is that of piñon-juniper (PJ) woodlands, a diverse and widespread vegetation type whose AGB has not been mapped in a comprehensive and targeted manner using lidar. In this study, we investigated airborne and spaceborne lidar for their respective AGB estimation abilities in PJ woodlands. Using data from 177 field plots distributed over 18 sites capturing the spatial and ecological variability within the full range of PJ in the US, we compared three different modeling approaches: (1) using field-measured AGB to train and validate models built from airborne laser scanning (ALS) data (Field→ALS); (2) using field-measured AGB to train and validate models built from simulated Global Ecosystem Dynamics Investigation (GEDI) waveforms (Field→GEDIsim); and (3) using ALS-modeled AGB to train and validate models built from real GEDI waveforms (ALS→GEDIreal). In doing so, we also compared three different ensemble decision tree-based machine learning algorithms: (1) cubist; (2) random forests; and (3) extreme gradient boosting (XGBoost). The Field→ALS models performed very well, with a mean R2 of 0.69 and nRMSE of 36.91% across the three machine learning algorithms. The Field→GEDIsim models saw decreased performance (R2mean = 0.50; nRMSEmean = 47.47%), likely due to the simulated waveforms' inability to sufficiently capture vegetation structure in the short, sparse woodlands. The ALS→GEDIreal had the lowest mean R2 (0.36), but relatively constrained predictions yielded similar mean nRMSE to Field→GEDIsim (46.19%), though that is without accounting for the propagation of error resulting from being trained and validated on modeled predictions rather than measured values. Cubist's ability to extrapolate proved helpful in the presence of stronger predictors (i.e., Field→ALS), enhancing prediction of extreme AGB values not represented in the reference data. Conversely, when predictive capacity was comparably low (i.e., Field→GEDIsim and ALS→GEDIreal), random forests and XGBoost's inability to extrapolate yielded lower predictive error. We compared our results to the GEDI Level 4A (L4A) footprint-level AGB product, which revealed that L4A tends to significantly underestimate AGB in PJ woodlands and fails to capture variability on the low end of the AGB spectrum (0–100 Mg/ha). These results demonstrate promise for broad-scale, lidar-driven PJ and other dry woodland ecosystem AGB mapping, and suggest that with more ecosystem-tailored models, near-global products such as L4A could be improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助吱吱采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
39秒前
43秒前
威武的翠安完成签到 ,获得积分10
44秒前
小马甲应助阿米尔盼盼采纳,获得10
48秒前
zxx完成签到 ,获得积分0
1分钟前
gwbk完成签到,获得积分10
1分钟前
HCCha完成签到,获得积分10
1分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
甘川完成签到 ,获得积分10
3分钟前
qq完成签到 ,获得积分10
3分钟前
su完成签到 ,获得积分10
3分钟前
严冰蝶完成签到 ,获得积分10
4分钟前
Jiang 小白发布了新的文献求助10
4分钟前
4分钟前
丘比特应助科研通管家采纳,获得10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
嗯嗯发布了新的文献求助10
5分钟前
嗯嗯完成签到,获得积分10
5分钟前
枪王阿绣完成签到 ,获得积分10
5分钟前
CipherSage应助FXe采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
Bonnienuit完成签到 ,获得积分10
6分钟前
搜集达人应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
田田完成签到 ,获得积分10
6分钟前
吱吱发布了新的文献求助10
7分钟前
吱吱完成签到,获得积分10
7分钟前
高高从霜完成签到 ,获得积分10
8分钟前
领导范儿应助科研通管家采纳,获得10
8分钟前
坚强紫山完成签到,获得积分10
8分钟前
xiaowangwang完成签到 ,获得积分10
8分钟前
鲤鱼山人完成签到 ,获得积分10
8分钟前
V_I_G完成签到 ,获得积分0
8分钟前
9分钟前
9分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584787
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771569
捐赠科研通 4614474
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531