已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluating the performance of airborne and spaceborne lidar for mapping biomass in the United States' largest dry woodland ecosystem

遥感 林地 环境科学 激光雷达 生物量(生态学) 生态系统 地理 地质学 生态学 海洋学 生物
作者
Michael J. Campbell,Jessie F. Eastburn,Philip E. Dennison,Jody C. Vogeler,Atticus Stovall
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:308: 114196-114196
标识
DOI:10.1016/j.rse.2024.114196
摘要

The ability of remote sensing to accurately quantify live aboveground biomass (AGB) varies by ecosystem. Given their important role in global carbon dynamics, deriving accurate, spatially and temporally explicit AGB estimates in dryland ecosystems is uniquely valuable. However, the shorter stature and sparser cover of vegetation in dryland ecosystems makes remote sensing of AGB particularly challenging. The United States' largest dry woodland ecosystem is that of piñon-juniper (PJ) woodlands, a diverse and widespread vegetation type whose AGB has not been mapped in a comprehensive and targeted manner using lidar. In this study, we investigated airborne and spaceborne lidar for their respective AGB estimation abilities in PJ woodlands. Using data from 177 field plots distributed over 18 sites capturing the spatial and ecological variability within the full range of PJ in the US, we compared three different modeling approaches: (1) using field-measured AGB to train and validate models built from airborne laser scanning (ALS) data (Field→ALS); (2) using field-measured AGB to train and validate models built from simulated Global Ecosystem Dynamics Investigation (GEDI) waveforms (Field→GEDIsim); and (3) using ALS-modeled AGB to train and validate models built from real GEDI waveforms (ALS→GEDIreal). In doing so, we also compared three different ensemble decision tree-based machine learning algorithms: (1) cubist; (2) random forests; and (3) extreme gradient boosting (XGBoost). The Field→ALS models performed very well, with a mean R2 of 0.69 and nRMSE of 36.91% across the three machine learning algorithms. The Field→GEDIsim models saw decreased performance (R2mean = 0.50; nRMSEmean = 47.47%), likely due to the simulated waveforms' inability to sufficiently capture vegetation structure in the short, sparse woodlands. The ALS→GEDIreal had the lowest mean R2 (0.36), but relatively constrained predictions yielded similar mean nRMSE to Field→GEDIsim (46.19%), though that is without accounting for the propagation of error resulting from being trained and validated on modeled predictions rather than measured values. Cubist's ability to extrapolate proved helpful in the presence of stronger predictors (i.e., Field→ALS), enhancing prediction of extreme AGB values not represented in the reference data. Conversely, when predictive capacity was comparably low (i.e., Field→GEDIsim and ALS→GEDIreal), random forests and XGBoost's inability to extrapolate yielded lower predictive error. We compared our results to the GEDI Level 4A (L4A) footprint-level AGB product, which revealed that L4A tends to significantly underestimate AGB in PJ woodlands and fails to capture variability on the low end of the AGB spectrum (0–100 Mg/ha). These results demonstrate promise for broad-scale, lidar-driven PJ and other dry woodland ecosystem AGB mapping, and suggest that with more ecosystem-tailored models, near-global products such as L4A could be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Enola完成签到 ,获得积分10
1秒前
2秒前
2秒前
小耗子发布了新的文献求助10
3秒前
大模型应助pishuang采纳,获得10
4秒前
5秒前
壮观大炮完成签到,获得积分10
6秒前
长情的寇完成签到 ,获得积分10
6秒前
可爱初瑶发布了新的文献求助10
7秒前
7秒前
雾海完成签到,获得积分10
9秒前
英俊的铭应助siso采纳,获得10
9秒前
zhangyue7777完成签到,获得积分10
9秒前
newplayer发布了新的文献求助10
12秒前
科研通AI2S应助可爱初瑶采纳,获得10
12秒前
13秒前
张然完成签到,获得积分20
14秒前
16秒前
Fxy完成签到 ,获得积分10
18秒前
pishuang发布了新的文献求助10
19秒前
冬柳完成签到,获得积分10
19秒前
冰川与星辰完成签到,获得积分10
19秒前
嘻嘻完成签到 ,获得积分10
20秒前
努力的小明明完成签到,获得积分10
21秒前
21秒前
22秒前
ding应助小耗子采纳,获得10
23秒前
超级安莲完成签到,获得积分10
23秒前
领导范儿应助Leo采纳,获得10
24秒前
123发布了新的文献求助10
25秒前
newplayer完成签到,获得积分10
26秒前
28秒前
zzz发布了新的文献求助10
28秒前
ABCD完成签到 ,获得积分10
30秒前
31秒前
无花果应助123采纳,获得10
33秒前
西宁发布了新的文献求助10
33秒前
hayek完成签到,获得积分10
35秒前
Leo发布了新的文献求助10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463082
求助须知:如何正确求助?哪些是违规求助? 4567845
关于积分的说明 14311869
捐赠科研通 4493691
什么是DOI,文献DOI怎么找? 2461823
邀请新用户注册赠送积分活动 1450866
关于科研通互助平台的介绍 1426021