Evaluating the performance of airborne and spaceborne lidar for mapping biomass in the United States' largest dry woodland ecosystem

遥感 林地 环境科学 激光雷达 生物量(生态学) 生态系统 地理 地质学 生态学 海洋学 生物
作者
Michael J. Campbell,Jessie F. Eastburn,Philip E. Dennison,Jody C. Vogeler,Atticus Stovall
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:308: 114196-114196
标识
DOI:10.1016/j.rse.2024.114196
摘要

The ability of remote sensing to accurately quantify live aboveground biomass (AGB) varies by ecosystem. Given their important role in global carbon dynamics, deriving accurate, spatially and temporally explicit AGB estimates in dryland ecosystems is uniquely valuable. However, the shorter stature and sparser cover of vegetation in dryland ecosystems makes remote sensing of AGB particularly challenging. The United States' largest dry woodland ecosystem is that of piñon-juniper (PJ) woodlands, a diverse and widespread vegetation type whose AGB has not been mapped in a comprehensive and targeted manner using lidar. In this study, we investigated airborne and spaceborne lidar for their respective AGB estimation abilities in PJ woodlands. Using data from 177 field plots distributed over 18 sites capturing the spatial and ecological variability within the full range of PJ in the US, we compared three different modeling approaches: (1) using field-measured AGB to train and validate models built from airborne laser scanning (ALS) data (Field→ALS); (2) using field-measured AGB to train and validate models built from simulated Global Ecosystem Dynamics Investigation (GEDI) waveforms (Field→GEDIsim); and (3) using ALS-modeled AGB to train and validate models built from real GEDI waveforms (ALS→GEDIreal). In doing so, we also compared three different ensemble decision tree-based machine learning algorithms: (1) cubist; (2) random forests; and (3) extreme gradient boosting (XGBoost). The Field→ALS models performed very well, with a mean R2 of 0.69 and nRMSE of 36.91% across the three machine learning algorithms. The Field→GEDIsim models saw decreased performance (R2mean = 0.50; nRMSEmean = 47.47%), likely due to the simulated waveforms' inability to sufficiently capture vegetation structure in the short, sparse woodlands. The ALS→GEDIreal had the lowest mean R2 (0.36), but relatively constrained predictions yielded similar mean nRMSE to Field→GEDIsim (46.19%), though that is without accounting for the propagation of error resulting from being trained and validated on modeled predictions rather than measured values. Cubist's ability to extrapolate proved helpful in the presence of stronger predictors (i.e., Field→ALS), enhancing prediction of extreme AGB values not represented in the reference data. Conversely, when predictive capacity was comparably low (i.e., Field→GEDIsim and ALS→GEDIreal), random forests and XGBoost's inability to extrapolate yielded lower predictive error. We compared our results to the GEDI Level 4A (L4A) footprint-level AGB product, which revealed that L4A tends to significantly underestimate AGB in PJ woodlands and fails to capture variability on the low end of the AGB spectrum (0–100 Mg/ha). These results demonstrate promise for broad-scale, lidar-driven PJ and other dry woodland ecosystem AGB mapping, and suggest that with more ecosystem-tailored models, near-global products such as L4A could be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李海平完成签到 ,获得积分10
1秒前
聪慧的从雪完成签到 ,获得积分10
5秒前
安详的语蕊完成签到,获得积分10
8秒前
淡然的剑通完成签到 ,获得积分10
9秒前
Holly完成签到,获得积分10
11秒前
科研王子完成签到,获得积分10
11秒前
宇文雨文给宇文雨文的求助进行了留言
13秒前
Ly完成签到 ,获得积分10
16秒前
23完成签到,获得积分10
18秒前
PHI完成签到 ,获得积分10
19秒前
叶未晞yi完成签到,获得积分10
21秒前
drjyang完成签到,获得积分10
25秒前
29秒前
乔巴完成签到 ,获得积分10
31秒前
正直冰露完成签到 ,获得积分10
32秒前
十月天秤完成签到,获得积分10
35秒前
36秒前
香蕉觅云应助宇文雨文采纳,获得30
38秒前
健壮惋清完成签到 ,获得积分10
38秒前
zhangguo完成签到 ,获得积分10
38秒前
HHM完成签到,获得积分10
39秒前
lalala完成签到 ,获得积分10
41秒前
细心的安双完成签到 ,获得积分10
41秒前
宋芽芽u发布了新的文献求助10
42秒前
pK完成签到 ,获得积分10
42秒前
群青完成签到 ,获得积分10
45秒前
叶子完成签到,获得积分10
46秒前
48秒前
ZDM6094完成签到 ,获得积分10
49秒前
叶子完成签到,获得积分10
49秒前
49秒前
杨涵完成签到 ,获得积分10
52秒前
小龙发布了新的文献求助10
54秒前
SCI完成签到 ,获得积分10
57秒前
雨寒完成签到 ,获得积分10
59秒前
糊糊完成签到 ,获得积分10
1分钟前
小龙完成签到,获得积分10
1分钟前
Tom完成签到,获得积分10
1分钟前
1分钟前
byby完成签到,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212420
求助须知:如何正确求助?哪些是违规求助? 4388601
关于积分的说明 13664165
捐赠科研通 4249133
什么是DOI,文献DOI怎么找? 2331417
邀请新用户注册赠送积分活动 1329109
关于科研通互助平台的介绍 1282517