Deep learning-based fully automatic screening of carotid artery plaques in computed tomography angiography: A multicenter study

医学 放射科 计算机断层血管造影 颈动脉 计算机断层摄影术 血管造影 多中心研究 病理 内科学 随机对照试验
作者
D. Zhai,Rong Liu,Y. Liu,Hongkun Yin,Wen Tang,Jian Yang,K. Liu,Guohua Fan,Shenghong Ju,Wenli Cai
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (8): e994-e1002
标识
DOI:10.1016/j.crad.2024.04.015
摘要

Purpose To develop and validate a deep learning (DL) algorithm for the automated detection and classification of carotid artery plaques (CAPs) on computed tomography angiography (CTA) images. Materials and Methods This retrospective study enrolled 400 patients (300 in center Ⅰ and 100 in Ⅱ). Three radiologists co-labelled CAPs, and their revised calcification status (noncalcified, mixed, calcified) was regarded as ground truth. Center Ⅰ patients were randomly divided into training and internal validation datasets, while Center Ⅱ patients served as the external validation dataset. Carotid artery regions were segmented using a modified 3D-UNet network, followed by CAPs detection and classification using a ResUNet-based architecture in a two-step DL system. The DL model's detection and classification performance were evaluated on the validation dataset using precision-recall curve, free-response receiver operating characteristic (fROC) curve, Cohen's kappa, and ROC curve analysis. Results The DL model had achieved 83.4% sensitivity at 3.0 false-positives (FPs)/CTA scan in internal validation, and 78.9% in external validation. F1-scores were 0.764 and 0.769 at the optimal threshold, and area under fROC curves were 0.756 and 0.738, respectively, indicating good overall accuracy for CAP detection. The DL model also showed good performance for the ternary classification of CAPs, with Cohen's kappa achieved 0.728 and 0.703 in both validation datasets. Conclusion This study demonstrated the feasibility of using a fully automated DL-based algorithm for the detection and ternary classification of CAPs, which could be helpful for the workloads of radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小垃圾完成签到,获得积分10
1秒前
桐桐应助linzhuo采纳,获得10
3秒前
3秒前
3秒前
4秒前
zfy完成签到,获得积分10
4秒前
6秒前
8秒前
8秒前
韩乐乐发布了新的文献求助10
9秒前
脆脆完成签到,获得积分10
10秒前
ziye给ziye的求助进行了留言
10秒前
10秒前
13秒前
14秒前
15秒前
longyuyan完成签到,获得积分10
15秒前
15秒前
16秒前
guobin完成签到 ,获得积分10
18秒前
昏睡的慕青完成签到,获得积分10
19秒前
停停走走发布了新的文献求助10
19秒前
zhou国兵发布了新的文献求助10
20秒前
路惠发布了新的文献求助10
20秒前
可爱的函函应助liuchengyu采纳,获得10
23秒前
852应助停停走走采纳,获得10
25秒前
26秒前
26秒前
帕克完成签到,获得积分10
27秒前
喜静完成签到 ,获得积分10
27秒前
尊敬的小熊猫完成签到,获得积分10
29秒前
天真以莲发布了新的文献求助10
30秒前
冷酷的枕头完成签到,获得积分20
30秒前
32秒前
皮本皮发布了新的文献求助10
34秒前
36秒前
37秒前
今后应助佳仔采纳,获得10
39秒前
40秒前
Allen完成签到,获得积分10
41秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265274
求助须知:如何正确求助?哪些是违规求助? 2905225
关于积分的说明 8333141
捐赠科研通 2575611
什么是DOI,文献DOI怎么找? 1399951
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633471