Exploratory Training for Universal Lesion Detection: Enhancing Lesion Mining Quality Through Temporal Verification

计算机科学 质量(理念) 人工智能 病变 模式识别(心理学) 医学 病理 认识论 哲学
作者
Xiaoyu Bai,Geng Chen,Benteng Ma,Changyang Li,Jingfeng Zhang,Yong Xia
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3417274
摘要

Universal lesion detection (ULD) has great value in clinical practice as it can detect various lesions across multiple organs. Deep learning-based detectors have great potential but require high-quality annotated training data. In practice, due to cost, expertise requirements, and the diverse nature of lesions, incomplete annotations are often encountered. Directly training ULD detectors under this condition can yield suboptimal results. Leading pseudo-label methods rely on a dynamic lesion-mining mechanism operating at the mini-batch level to address the issue of incomplete annotations. However, the quality of mined lesions in this approach is inconsistent across different iterations, potentially limiting performance enhancement. Inspired by the observation that deep models learn concepts with increasing complexity, we propose an innovative exploratory-training-based ULD (ET-ULD) method to assess the reliability of mined lesions over time. Specifically, we employ a teacher-student detection model, the teacher model is used to mine suspicious lesions, which are combined with incomplete annotations to train the student model. On top of that, we design a bounding-box bank to record the mining timestamps. Each image is trained in several rounds, allowing us to get a sequence of timestamps for the mined lesions. If a mined lesion consistently appears in the timestamp sequence, it is likely to be a true lesion, otherwise, it may just be a noise. This serves as a crucial criterion for selecting reliable mined lesions for subsequent retraining. Our experimental results confirm the effectiveness of ET-ULD, showcasing its ability to surpass existing state-of-the-art methods on two distinct lesion image datasets. Notably, on the DeepLesion dataset, ET-ULD achieved a significant enhancement, outperforming the previous leading method by 5.4% in Average Precision (AP), thus demonstrating its superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
无奈行恶应助稳重的寒梦采纳,获得20
2秒前
无奈行恶应助稳重的寒梦采纳,获得20
2秒前
wen发布了新的文献求助10
4秒前
4秒前
以行践言发布了新的文献求助10
4秒前
在水一方应助闺音采纳,获得10
7秒前
写得出发的中完成签到,获得积分10
7秒前
Chen272发布了新的文献求助10
7秒前
我要文献发布了新的文献求助10
8秒前
汉堡包应助frl采纳,获得10
9秒前
DK发布了新的文献求助10
9秒前
9秒前
旭晓完成签到 ,获得积分10
10秒前
10秒前
10秒前
wen关闭了wen文献求助
12秒前
13秒前
猫小树完成签到 ,获得积分10
13秒前
CipherSage应助考研小白采纳,获得10
15秒前
杨振发布了新的文献求助10
15秒前
BatFaith应助阿俊1212采纳,获得30
15秒前
DK完成签到,获得积分10
15秒前
我要文献完成签到,获得积分20
15秒前
15秒前
搜集达人应助清风采纳,获得10
16秒前
Dora完成签到,获得积分10
16秒前
17秒前
17秒前
孟醒完成签到,获得积分10
19秒前
活泼蜡烛发布了新的文献求助10
19秒前
研友_ngKyqn发布了新的文献求助10
20秒前
kk子发布了新的文献求助10
20秒前
wanwan应助DDDDD采纳,获得10
20秒前
ding应助Chen272采纳,获得10
22秒前
华仔应助爱听歌时光采纳,获得10
22秒前
24秒前
彭于晏应助去追一只鹿采纳,获得10
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425