亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploratory Training for Universal Lesion Detection: Enhancing Lesion Mining Quality Through Temporal Verification

计算机科学 质量(理念) 人工智能 病变 模式识别(心理学) 医学 病理 哲学 认识论
作者
Xiaoyu Bai,Geng Chen,Benteng Ma,Changyang Li,Jingfeng Zhang,Yong Xia
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3417274
摘要

Universal lesion detection (ULD) has great value in clinical practice as it can detect various lesions across multiple organs. Deep learning-based detectors have great potential but require high-quality annotated training data. In practice, due to cost, expertise requirements, and the diverse nature of lesions, incomplete annotations are often encountered. Directly training ULD detectors under this condition can yield suboptimal results. Leading pseudo-label methods rely on a dynamic lesion-mining mechanism operating at the mini-batch level to address the issue of incomplete annotations. However, the quality of mined lesions in this approach is inconsistent across different iterations, potentially limiting performance enhancement. Inspired by the observation that deep models learn concepts with increasing complexity, we propose an innovative exploratory-training-based ULD (ET-ULD) method to assess the reliability of mined lesions over time. Specifically, we employ a teacher-student detection model, the teacher model is used to mine suspicious lesions, which are combined with incomplete annotations to train the student model. On top of that, we design a bounding-box bank to record the mining timestamps. Each image is trained in several rounds, allowing us to get a sequence of timestamps for the mined lesions. If a mined lesion consistently appears in the timestamp sequence, it is likely to be a true lesion, otherwise, it may just be a noise. This serves as a crucial criterion for selecting reliable mined lesions for subsequent retraining. Our experimental results confirm the effectiveness of ET-ULD, showcasing its ability to surpass existing state-of-the-art methods on two distinct lesion image datasets. Notably, on the DeepLesion dataset, ET-ULD achieved a significant enhancement, outperforming the previous leading method by 5.4% in Average Precision (AP), thus demonstrating its superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
文博发布了新的文献求助10
8秒前
lilili2060发布了新的文献求助10
9秒前
11秒前
谢丹完成签到 ,获得积分10
14秒前
Angela完成签到,获得积分10
16秒前
wzy123发布了新的文献求助10
18秒前
儒雅的城完成签到,获得积分10
20秒前
wzy123完成签到,获得积分20
26秒前
无敌大裤衩完成签到,获得积分10
27秒前
怡然剑成完成签到 ,获得积分10
27秒前
薛建伟完成签到 ,获得积分10
30秒前
lixuebin完成签到 ,获得积分10
30秒前
33秒前
34秒前
34秒前
歡禧完成签到,获得积分20
35秒前
文博完成签到,获得积分20
36秒前
周凡淇发布了新的文献求助10
37秒前
歡禧发布了新的文献求助10
38秒前
Terfi完成签到,获得积分10
46秒前
可爱的函函应助文博采纳,获得10
46秒前
kento完成签到,获得积分0
47秒前
pilgrim应助歡禧采纳,获得10
48秒前
52秒前
破烂发布了新的文献求助10
57秒前
DODO完成签到,获得积分10
1分钟前
左白易发布了新的文献求助10
1分钟前
哭泣的OO完成签到,获得积分10
1分钟前
心随以动完成签到 ,获得积分10
1分钟前
cqhecq完成签到,获得积分10
1分钟前
1分钟前
修辛完成签到 ,获得积分10
1分钟前
PDE完成签到,获得积分10
1分钟前
yxy104发布了新的文献求助10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得30
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291069
求助须知:如何正确求助?哪些是违规求助? 4442222
关于积分的说明 13829543
捐赠科研通 4325186
什么是DOI,文献DOI怎么找? 2374028
邀请新用户注册赠送积分活动 1369382
关于科研通互助平台的介绍 1333523