清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploratory Training for Universal Lesion Detection: Enhancing Lesion Mining Quality Through Temporal Verification

计算机科学 质量(理念) 人工智能 病变 模式识别(心理学) 医学 病理 认识论 哲学
作者
Xiaoyu Bai,Geng Chen,Benteng Ma,Changyang Li,Jingfeng Zhang,Yong Xia
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3417274
摘要

Universal lesion detection (ULD) has great value in clinical practice as it can detect various lesions across multiple organs. Deep learning-based detectors have great potential but require high-quality annotated training data. In practice, due to cost, expertise requirements, and the diverse nature of lesions, incomplete annotations are often encountered. Directly training ULD detectors under this condition can yield suboptimal results. Leading pseudo-label methods rely on a dynamic lesion-mining mechanism operating at the mini-batch level to address the issue of incomplete annotations. However, the quality of mined lesions in this approach is inconsistent across different iterations, potentially limiting performance enhancement. Inspired by the observation that deep models learn concepts with increasing complexity, we propose an innovative exploratory-training-based ULD (ET-ULD) method to assess the reliability of mined lesions over time. Specifically, we employ a teacher-student detection model, the teacher model is used to mine suspicious lesions, which are combined with incomplete annotations to train the student model. On top of that, we design a bounding-box bank to record the mining timestamps. Each image is trained in several rounds, allowing us to get a sequence of timestamps for the mined lesions. If a mined lesion consistently appears in the timestamp sequence, it is likely to be a true lesion, otherwise, it may just be a noise. This serves as a crucial criterion for selecting reliable mined lesions for subsequent retraining. Our experimental results confirm the effectiveness of ET-ULD, showcasing its ability to surpass existing state-of-the-art methods on two distinct lesion image datasets. Notably, on the DeepLesion dataset, ET-ULD achieved a significant enhancement, outperforming the previous leading method by 5.4% in Average Precision (AP), thus demonstrating its superior performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ivan完成签到 ,获得积分10
6秒前
Wang完成签到 ,获得积分20
8秒前
方白秋完成签到,获得积分0
38秒前
科研通AI6应助噜噜大王采纳,获得10
1分钟前
迷茫的一代完成签到,获得积分10
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
1分钟前
bju发布了新的文献求助10
2分钟前
bju完成签到,获得积分10
2分钟前
wang1030完成签到 ,获得积分10
2分钟前
噜噜大王发布了新的文献求助10
2分钟前
Heba完成签到,获得积分20
2分钟前
lrid完成签到 ,获得积分10
3分钟前
yxy完成签到 ,获得积分10
3分钟前
希望天下0贩的0应助Claudia采纳,获得10
3分钟前
Heba发布了新的文献求助30
3分钟前
3分钟前
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Claudia发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
紫熊完成签到,获得积分10
4分钟前
4分钟前
zzhui完成签到,获得积分10
4分钟前
Vintoe完成签到 ,获得积分10
4分钟前
小燕子完成签到 ,获得积分10
4分钟前
Owen应助catherine采纳,获得10
5分钟前
cat发布了新的文献求助50
5分钟前
juan完成签到 ,获得积分0
5分钟前
赵一完成签到 ,获得积分10
5分钟前
5分钟前
catherine发布了新的文献求助10
6分钟前
龚文亮完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568283
求助须知:如何正确求助?哪些是违规求助? 4652769
关于积分的说明 14702004
捐赠科研通 4594595
什么是DOI,文献DOI怎么找? 2521083
邀请新用户注册赠送积分活动 1492900
关于科研通互助平台的介绍 1463715