Exploratory Training for Universal Lesion Detection: Enhancing Lesion Mining Quality Through Temporal Verification

计算机科学 质量(理念) 人工智能 病变 模式识别(心理学) 医学 病理 认识论 哲学
作者
Xiaoyu Bai,Geng Chen,Benteng Ma,Changyang Li,Jingfeng Zhang,Yong Xia
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3417274
摘要

Universal lesion detection (ULD) has great value in clinical practice as it can detect various lesions across multiple organs. Deep learning-based detectors have great potential but require high-quality annotated training data. In practice, due to cost, expertise requirements, and the diverse nature of lesions, incomplete annotations are often encountered. Directly training ULD detectors under this condition can yield suboptimal results. Leading pseudo-label methods rely on a dynamic lesion-mining mechanism operating at the mini-batch level to address the issue of incomplete annotations. However, the quality of mined lesions in this approach is inconsistent across different iterations, potentially limiting performance enhancement. Inspired by the observation that deep models learn concepts with increasing complexity, we propose an innovative exploratory-training-based ULD (ET-ULD) method to assess the reliability of mined lesions over time. Specifically, we employ a teacher-student detection model, the teacher model is used to mine suspicious lesions, which are combined with incomplete annotations to train the student model. On top of that, we design a bounding-box bank to record the mining timestamps. Each image is trained in several rounds, allowing us to get a sequence of timestamps for the mined lesions. If a mined lesion consistently appears in the timestamp sequence, it is likely to be a true lesion, otherwise, it may just be a noise. This serves as a crucial criterion for selecting reliable mined lesions for subsequent retraining. Our experimental results confirm the effectiveness of ET-ULD, showcasing its ability to surpass existing state-of-the-art methods on two distinct lesion image datasets. Notably, on the DeepLesion dataset, ET-ULD achieved a significant enhancement, outperforming the previous leading method by 5.4% in Average Precision (AP), thus demonstrating its superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flash完成签到,获得积分10
刚刚
小蒋完成签到 ,获得积分10
刚刚
www完成签到,获得积分10
1秒前
sherman发布了新的文献求助10
3秒前
李健的小迷弟应助VDC采纳,获得10
3秒前
大模型应助小巧的傲松采纳,获得10
3秒前
4秒前
成功Winy完成签到,获得积分10
4秒前
马绿旋完成签到,获得积分10
4秒前
5秒前
www发布了新的文献求助10
6秒前
一哥哥来薅文献完成签到,获得积分10
6秒前
6秒前
7秒前
yangkunmedical完成签到,获得积分10
7秒前
我是老大应助98采纳,获得10
7秒前
踏实无敌应助蔡从安采纳,获得10
7秒前
踏实无敌应助蔡从安采纳,获得10
7秒前
科研通AI5应助薇薇采纳,获得30
7秒前
8秒前
9秒前
9秒前
lily关注了科研通微信公众号
9秒前
10秒前
ProfCTS完成签到,获得积分10
10秒前
De_Frank123发布了新的文献求助10
11秒前
11秒前
羽楠完成签到,获得积分10
11秒前
Owen应助潘婷婷呀采纳,获得10
11秒前
Crystal完成签到,获得积分10
12秒前
852应助榴莲姑娘采纳,获得30
13秒前
小王发布了新的文献求助10
14秒前
贪玩晶完成签到 ,获得积分10
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
南湖秋水发布了新的文献求助30
17秒前
大模型应助小王采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745081
求助须知:如何正确求助?哪些是违规求助? 3287963
关于积分的说明 10056783
捐赠科研通 3004153
什么是DOI,文献DOI怎么找? 1649530
邀请新用户注册赠送积分活动 785360
科研通“疑难数据库(出版商)”最低求助积分说明 751063