Research on mobile robot path planning in complex environment based on DRQN algorithm

移动机器人 运动规划 计算机科学 路径(计算) 机器人 人工智能 算法 计算机网络
作者
Shuai Wang,Yuhong Du,Jingxuan Lin,Shuaijie Zhao
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (7): 076012-076012
标识
DOI:10.1088/1402-4896/ad551b
摘要

Abstract A deep reinforcement Q learning algorithm (DRQN) based on radial neural network is proposed to achieve path planning and obstacle avoidance for mobile robots in complex ground environments with different types of obstacles, including static and dynamic obstacles. Firstly, the path planning problem is represented as a partially-observed Markov decision process. Steering angle, running characteristics, and other elements are introduced into the state-action decision space and the greedy factor is dynamically adjusted using a simulated annealing algorithm, which improves the mobile robot’s environment exploration and action selection accuracy. Secondly, the Q-learning algorithm is improved by replacing the Q-table structure with an RBF neural network to enhance the approximation ability of the algorithm’s function values, and the parameters of the implicit layer and the weights between the implicit and the output layer are trained using the dynamic clustering and least-mean methods respectively, which improves the convergence speed and enhances the ability of mobile robots to handle large-scale computation. Lastly, the double reward mechanism is set up to prevent the mobile robot from blind searching in unknown environments, which enhances the learning ability and improves path planning safety and flexibility at the same time. Different types of scenarios are set up for simulation experiments, and the results verified the superiority of the DQRN algorithm. Taking the 30 * 30 complex scene as an example, using the DQRN algorithm for path planning reduces the values of distance, turning angle, and planning time by 27.04%, 7.76%, and 28.05%, respectively, compared to the average values of Q-learning, optimized Q-learning, deep Q-learning, and DDPG algorithms, which can effectively improve the path planning efficiency for mobile robots in complex environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
娜行发布了新的文献求助10
3秒前
4秒前
笨笨小天鹅完成签到,获得积分10
4秒前
xuedistance发布了新的文献求助10
4秒前
李健应助黑眼睛采纳,获得20
4秒前
5秒前
a楠发布了新的文献求助10
5秒前
科目三应助Jodie采纳,获得10
7秒前
团子发布了新的文献求助10
7秒前
7秒前
8秒前
October发布了新的文献求助10
10秒前
张丹兰发布了新的文献求助10
11秒前
酷波er应助娇气的火车采纳,获得10
11秒前
安平完成签到,获得积分10
12秒前
13秒前
Wang完成签到 ,获得积分10
14秒前
每天都要开心完成签到 ,获得积分10
15秒前
Verity应助涂丁元采纳,获得10
15秒前
15秒前
圣母院的赵大夫关注了科研通微信公众号
16秒前
娜行发布了新的文献求助10
16秒前
小白完成签到 ,获得积分10
17秒前
lili完成签到 ,获得积分10
19秒前
October完成签到,获得积分10
19秒前
20秒前
科研通AI6应助豆豆突采纳,获得10
21秒前
嘿嘿发布了新的文献求助10
24秒前
张丹兰完成签到,获得积分10
24秒前
微笑的丑发布了新的文献求助10
25秒前
26秒前
27秒前
繁荣的夏岚完成签到 ,获得积分10
29秒前
29秒前
ZeKaWa应助keyan123采纳,获得10
31秒前
Jeff发布了新的文献求助10
31秒前
Wang发布了新的文献求助30
32秒前
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915