Research on mobile robot path planning in complex environment based on DRQN algorithm

移动机器人 运动规划 计算机科学 路径(计算) 机器人 人工智能 算法 计算机网络
作者
Shuai Wang,Yuhong Du,Jingxuan Lin,Shuaijie Zhao
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (7): 076012-076012
标识
DOI:10.1088/1402-4896/ad551b
摘要

Abstract A deep reinforcement Q learning algorithm (DRQN) based on radial neural network is proposed to achieve path planning and obstacle avoidance for mobile robots in complex ground environments with different types of obstacles, including static and dynamic obstacles. Firstly, the path planning problem is represented as a partially-observed Markov decision process. Steering angle, running characteristics, and other elements are introduced into the state-action decision space and the greedy factor is dynamically adjusted using a simulated annealing algorithm, which improves the mobile robot’s environment exploration and action selection accuracy. Secondly, the Q-learning algorithm is improved by replacing the Q-table structure with an RBF neural network to enhance the approximation ability of the algorithm’s function values, and the parameters of the implicit layer and the weights between the implicit and the output layer are trained using the dynamic clustering and least-mean methods respectively, which improves the convergence speed and enhances the ability of mobile robots to handle large-scale computation. Lastly, the double reward mechanism is set up to prevent the mobile robot from blind searching in unknown environments, which enhances the learning ability and improves path planning safety and flexibility at the same time. Different types of scenarios are set up for simulation experiments, and the results verified the superiority of the DQRN algorithm. Taking the 30 * 30 complex scene as an example, using the DQRN algorithm for path planning reduces the values of distance, turning angle, and planning time by 27.04%, 7.76%, and 28.05%, respectively, compared to the average values of Q-learning, optimized Q-learning, deep Q-learning, and DDPG algorithms, which can effectively improve the path planning efficiency for mobile robots in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助kai采纳,获得10
刚刚
打打应助留胡子的青柏采纳,获得10
1秒前
1秒前
zhanghw发布了新的文献求助10
1秒前
Frank完成签到,获得积分10
1秒前
桐桐应助小喵采纳,获得10
1秒前
香蕉觅云应助执笔客采纳,获得10
1秒前
light完成签到 ,获得积分10
1秒前
你仔细听完成签到,获得积分10
2秒前
2秒前
Sailzyf完成签到,获得积分10
2秒前
抓恐龙发布了新的文献求助10
2秒前
2秒前
汉堡包应助言小采纳,获得10
3秒前
Chen发布了新的文献求助10
3秒前
lql233完成签到,获得积分20
3秒前
雪白问兰完成签到 ,获得积分10
3秒前
3秒前
魅力蜗牛完成签到,获得积分10
3秒前
3秒前
upup小李完成签到 ,获得积分10
4秒前
手帕很忙完成签到,获得积分10
4秒前
害羞含雁发布了新的文献求助10
4秒前
4秒前
zp完成签到 ,获得积分10
4秒前
ren发布了新的文献求助10
5秒前
Lucas应助踏实的小海豚采纳,获得10
5秒前
Lucas应助2go采纳,获得10
5秒前
Jasper应助日月山河永在采纳,获得10
6秒前
6秒前
7秒前
7秒前
慕青应助没有名称采纳,获得10
7秒前
HEIKU应助聪慧的机器猫采纳,获得10
7秒前
拼搏翠桃发布了新的文献求助10
8秒前
8个老登发布了新的文献求助10
9秒前
9秒前
hhy完成签到,获得积分10
9秒前
孙一雯发布了新的文献求助30
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672