亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on mobile robot path planning in complex environment based on DRQN algorithm

移动机器人 运动规划 计算机科学 路径(计算) 机器人 人工智能 算法 计算机网络
作者
Shuai Wang,Yuhong Du,Jingxuan Lin,Shuaijie Zhao
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (7): 076012-076012
标识
DOI:10.1088/1402-4896/ad551b
摘要

Abstract A deep reinforcement Q learning algorithm (DRQN) based on radial neural network is proposed to achieve path planning and obstacle avoidance for mobile robots in complex ground environments with different types of obstacles, including static and dynamic obstacles. Firstly, the path planning problem is represented as a partially-observed Markov decision process. Steering angle, running characteristics, and other elements are introduced into the state-action decision space and the greedy factor is dynamically adjusted using a simulated annealing algorithm, which improves the mobile robot’s environment exploration and action selection accuracy. Secondly, the Q-learning algorithm is improved by replacing the Q-table structure with an RBF neural network to enhance the approximation ability of the algorithm’s function values, and the parameters of the implicit layer and the weights between the implicit and the output layer are trained using the dynamic clustering and least-mean methods respectively, which improves the convergence speed and enhances the ability of mobile robots to handle large-scale computation. Lastly, the double reward mechanism is set up to prevent the mobile robot from blind searching in unknown environments, which enhances the learning ability and improves path planning safety and flexibility at the same time. Different types of scenarios are set up for simulation experiments, and the results verified the superiority of the DQRN algorithm. Taking the 30 * 30 complex scene as an example, using the DQRN algorithm for path planning reduces the values of distance, turning angle, and planning time by 27.04%, 7.76%, and 28.05%, respectively, compared to the average values of Q-learning, optimized Q-learning, deep Q-learning, and DDPG algorithms, which can effectively improve the path planning efficiency for mobile robots in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsmj23完成签到 ,获得积分0
1秒前
AurorY发布了新的文献求助10
11秒前
12秒前
qiuer7应助科研通管家采纳,获得10
12秒前
Folivo完成签到,获得积分10
24秒前
25秒前
扣子完成签到,获得积分10
30秒前
Pengzhuhuai发布了新的文献求助10
31秒前
35秒前
Pengzhuhuai完成签到,获得积分10
36秒前
过氧化氢发布了新的文献求助10
40秒前
47秒前
51秒前
52秒前
54秒前
Cola发布了新的文献求助10
58秒前
希望天下0贩的0应助欣欣采纳,获得10
59秒前
遇上就这样吧应助ruby采纳,获得30
1分钟前
矢思然完成签到,获得积分10
1分钟前
Cola完成签到,获得积分20
1分钟前
1分钟前
欣欣发布了新的文献求助10
1分钟前
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
110o发布了新的文献求助10
1分钟前
2分钟前
qiuer7应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
llll完成签到 ,获得积分0
2分钟前
阳阿儿发布了新的文献求助30
2分钟前
隐形曼青应助believe采纳,获得10
2分钟前
2分钟前
believe发布了新的文献求助10
2分钟前
believe完成签到,获得积分10
2分钟前
Criminology34举报568923求助涉嫌违规
2分钟前
3分钟前
TXZ06发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422553
求助须知:如何正确求助?哪些是违规求助? 4537467
关于积分的说明 14157445
捐赠科研通 4454064
什么是DOI,文献DOI怎么找? 2443173
邀请新用户注册赠送积分活动 1434482
关于科研通互助平台的介绍 1411627