已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on mobile robot path planning in complex environment based on DRQN algorithm

移动机器人 运动规划 计算机科学 路径(计算) 机器人 人工智能 算法 计算机网络
作者
Shuai Wang,Yuhong Du,Jingxuan Lin,Shuaijie Zhao
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (7): 076012-076012
标识
DOI:10.1088/1402-4896/ad551b
摘要

Abstract A deep reinforcement Q learning algorithm (DRQN) based on radial neural network is proposed to achieve path planning and obstacle avoidance for mobile robots in complex ground environments with different types of obstacles, including static and dynamic obstacles. Firstly, the path planning problem is represented as a partially-observed Markov decision process. Steering angle, running characteristics, and other elements are introduced into the state-action decision space and the greedy factor is dynamically adjusted using a simulated annealing algorithm, which improves the mobile robot’s environment exploration and action selection accuracy. Secondly, the Q-learning algorithm is improved by replacing the Q-table structure with an RBF neural network to enhance the approximation ability of the algorithm’s function values, and the parameters of the implicit layer and the weights between the implicit and the output layer are trained using the dynamic clustering and least-mean methods respectively, which improves the convergence speed and enhances the ability of mobile robots to handle large-scale computation. Lastly, the double reward mechanism is set up to prevent the mobile robot from blind searching in unknown environments, which enhances the learning ability and improves path planning safety and flexibility at the same time. Different types of scenarios are set up for simulation experiments, and the results verified the superiority of the DQRN algorithm. Taking the 30 * 30 complex scene as an example, using the DQRN algorithm for path planning reduces the values of distance, turning angle, and planning time by 27.04%, 7.76%, and 28.05%, respectively, compared to the average values of Q-learning, optimized Q-learning, deep Q-learning, and DDPG algorithms, which can effectively improve the path planning efficiency for mobile robots in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明的高跟鞋完成签到 ,获得积分10
刚刚
Hello应助陈诺采纳,获得10
1秒前
汉堡包应助马界泡泡采纳,获得10
2秒前
迅速冰颜发布了新的文献求助10
2秒前
喵喵喵啊完成签到,获得积分10
3秒前
呼呼完成签到 ,获得积分10
3秒前
lu完成签到,获得积分10
7秒前
Ava应助负责觅海采纳,获得10
12秒前
仁爱青文完成签到 ,获得积分10
17秒前
Jasper应助meilinkai采纳,获得10
20秒前
殷勤的阑悦完成签到 ,获得积分10
20秒前
汉堡包应助奋斗的绝悟采纳,获得10
25秒前
科研通AI2S应助dylan采纳,获得10
26秒前
十一完成签到,获得积分10
28秒前
科研废物完成签到,获得积分10
29秒前
31秒前
科研通AI2S应助韩冬冬采纳,获得10
31秒前
徐叽钰应助七七采纳,获得10
35秒前
37秒前
嘻嘻完成签到 ,获得积分10
37秒前
Hello应助生动的天亦采纳,获得10
43秒前
十泱完成签到 ,获得积分10
43秒前
43秒前
45秒前
Owen应助优美的背包采纳,获得10
45秒前
降智小甜饼完成签到,获得积分10
47秒前
49秒前
49秒前
科目三应助谷歌采纳,获得10
51秒前
杨小桐发布了新的文献求助10
51秒前
chanjed关注了科研通微信公众号
51秒前
阳阳阳完成签到 ,获得积分10
52秒前
53秒前
乐正尔竹发布了新的文献求助10
54秒前
54秒前
碧蓝的凡柔完成签到,获得积分10
55秒前
美好书瑶发布了新的文献求助10
57秒前
59秒前
1分钟前
满当当完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136896
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783548
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299509
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954