Research on mobile robot path planning in complex environment based on DRQN algorithm

移动机器人 运动规划 计算机科学 路径(计算) 机器人 人工智能 算法 计算机网络
作者
Shuai Wang,Yuhong Du,Jingxuan Lin,Shuaijie Zhao
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (7): 076012-076012
标识
DOI:10.1088/1402-4896/ad551b
摘要

Abstract A deep reinforcement Q learning algorithm (DRQN) based on radial neural network is proposed to achieve path planning and obstacle avoidance for mobile robots in complex ground environments with different types of obstacles, including static and dynamic obstacles. Firstly, the path planning problem is represented as a partially-observed Markov decision process. Steering angle, running characteristics, and other elements are introduced into the state-action decision space and the greedy factor is dynamically adjusted using a simulated annealing algorithm, which improves the mobile robot’s environment exploration and action selection accuracy. Secondly, the Q-learning algorithm is improved by replacing the Q-table structure with an RBF neural network to enhance the approximation ability of the algorithm’s function values, and the parameters of the implicit layer and the weights between the implicit and the output layer are trained using the dynamic clustering and least-mean methods respectively, which improves the convergence speed and enhances the ability of mobile robots to handle large-scale computation. Lastly, the double reward mechanism is set up to prevent the mobile robot from blind searching in unknown environments, which enhances the learning ability and improves path planning safety and flexibility at the same time. Different types of scenarios are set up for simulation experiments, and the results verified the superiority of the DQRN algorithm. Taking the 30 * 30 complex scene as an example, using the DQRN algorithm for path planning reduces the values of distance, turning angle, and planning time by 27.04%, 7.76%, and 28.05%, respectively, compared to the average values of Q-learning, optimized Q-learning, deep Q-learning, and DDPG algorithms, which can effectively improve the path planning efficiency for mobile robots in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚好五个字完成签到,获得积分10
1秒前
英姑应助Charon采纳,获得10
1秒前
HH发布了新的文献求助10
1秒前
小王发布了新的文献求助10
1秒前
randomname完成签到,获得积分10
1秒前
2秒前
烟花应助波波采纳,获得10
2秒前
2秒前
吴帆发布了新的文献求助10
2秒前
露露露发布了新的文献求助10
2秒前
tlc_191026发布了新的文献求助10
2秒前
能干砖家完成签到,获得积分10
2秒前
腼腆的小熊猫完成签到 ,获得积分10
3秒前
后夜发布了新的文献求助10
3秒前
3秒前
3秒前
科目三应助咔咔采纳,获得10
3秒前
充电宝应助WANGJD采纳,获得10
4秒前
4秒前
科研通AI6应助jyyg采纳,获得30
4秒前
pcr163应助Angie采纳,获得50
5秒前
5秒前
小猴发布了新的文献求助10
5秒前
DRHSK发布了新的文献求助20
6秒前
Spinnin完成签到,获得积分10
7秒前
国足预备员完成签到 ,获得积分10
7秒前
ding应助piers采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
张德洁完成签到,获得积分10
8秒前
昭玥完成签到,获得积分10
9秒前
9秒前
9秒前
顾矜应助咸鱼采纳,获得10
9秒前
领导范儿应助小王采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得30
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
Ava应助xhDoc采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475