High-precision Lamb wave evaluation for corrosion damage with model-based Bayesian Optimization and Gaussian meta-modeling strategy

贝叶斯优化 贝叶斯概率 腐蚀 高斯分布 计算机科学 材料科学 人工智能 物理 复合材料 量子力学
作者
Dingcheng Ji,Fei Gao,Zongyang Liu,Hao Li,Jing Lin
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241256272
摘要

The presence of corrosion damage in metallic structures is a critical problem affecting system safety, which poses challenges for structural maintenance. Ultrasonic Lamb wave testing has shown many benefits, including high sensitivity and a large coverage area. However, multiple external factors are causing a mismatch between the imaging result and the actual damage. This study proposes a Bayesian Optimization-based model calibration framework, incorporating a Gaussian process (GP) measurement model, for accurate corrosion damage quantification. In this method, one critical problem is obtaining the high-fidelity Finite Element Method (FEM) model. The initial FEM model usually has inevitable modeling errors due to necessary simplifications and idealized constraints. Here we introduced Bayesian Optimization by which the numerical model could be calibrated. The calibrated FEM model, which had fewer discrepancies with actual experiments, could generate high-fidelity signals corresponding to various damage severity. Then, the GP measurement model outputted the mean and variance of the corrosion width and depth corresponding to the differences between experiment signals and model outputs. The inversion of damage information from the established GP model was accomplished by the genetic algorithm. Hence, both the damage size and depth could be evaluated with high accuracy. Once the corrosion information along different propagation paths was obtained, it can be combined with the location of the corrosion damage center for locating the edge points of the corrosion damage. In the end, the edge points were fitted using the least square algorithm. Validations were experimentally performed, and the detection result showed good consistency with the actual damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lli完成签到,获得积分10
刚刚
bkagyin应助liang采纳,获得10
刚刚
centlay发布了新的文献求助10
2秒前
2秒前
书生发布了新的文献求助10
2秒前
王自信发布了新的文献求助10
3秒前
肉包包完成签到,获得积分10
3秒前
taoze发布了新的文献求助10
3秒前
孙一峰发布了新的文献求助10
3秒前
4秒前
非我完成签到 ,获得积分10
4秒前
知昂张完成签到,获得积分20
5秒前
upupup完成签到,获得积分10
5秒前
5秒前
专一的荧完成签到,获得积分10
6秒前
afaf完成签到,获得积分10
6秒前
7秒前
无聊的亿先完成签到,获得积分20
8秒前
lapis完成签到,获得积分10
8秒前
莳柒完成签到 ,获得积分10
9秒前
9秒前
书生完成签到,获得积分10
9秒前
zhangtengteng发布了新的文献求助10
10秒前
赘婿应助小小怪将军采纳,获得150
11秒前
11秒前
12秒前
栗子栗栗子完成签到,获得积分20
14秒前
14秒前
XX完成签到 ,获得积分10
15秒前
prosperp应助Zpiao采纳,获得10
16秒前
科目三应助王自信采纳,获得10
17秒前
煜晟发布了新的文献求助10
18秒前
123keyan完成签到,获得积分10
18秒前
紫宸完成签到,获得积分10
18秒前
19秒前
细心宛凝发布了新的文献求助10
19秒前
水目完成签到,获得积分10
19秒前
阿如完成签到,获得积分20
20秒前
我是老大应助栗子栗栗子采纳,获得10
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469785
求助须知:如何正确求助?哪些是违规求助? 3062985
关于积分的说明 9080938
捐赠科研通 2753206
什么是DOI,文献DOI怎么找? 1510815
邀请新用户注册赠送积分活动 698061
科研通“疑难数据库(出版商)”最低求助积分说明 698018