Digital twin-based anomaly detection for real-time tool condition monitoring in machining

异常检测 机械加工 停工期 机床 数字化制造 工程类 计算机科学 实时计算 数据挖掘 机械工程 可靠性工程 制造工程
作者
Zepeng Liu,Zi–Qiang Lang,Yufei Gui,Yunpeng Zhu,Hatim Laalej
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:75: 163-173 被引量:4
标识
DOI:10.1016/j.jmsy.2024.06.004
摘要

Real-time tool condition monitoring (TCM) has been emerging as a key technology for smart manufacturing. TCM can improve the dimensional accuracy of products, minimize machine tool downtime, and eliminate scraps and re-work costs. Digital twins offer new opportunities for real-time monitoring of machining processes, which can, in principle, take into account changes in machining processes and operating environments, help understand mechanisms of cutting tool wear, and improve the anomaly detection accuracy and fault diagnosis results. The present study exploits these potential advantages of digital twins and proposes a new digital twin-based anomaly detection framework for real-time TCM in machining. The framework of the digital twin consists of three parts: the physical product, the virtual product and data flow connections. Within this framework of the digital twin, the "physical product" represents the machining processes. The "virtual product" includes a real-time data-driven model representing the dynamic relationship between vibration data measured from machining processes as well as the model frequency features (MFFs)-based diagnostics for cutting tool anomaly detection. The "data flow connections" involve real-time measured vibration data and machine tool numerical controller (NC) signals providing real-time information on machine tool dynamics and various machining processes. The novelty is associated with an innovative integration of real-time data-driven modeling, MFFs extraction, and MFFs and machine tool NC signal-based tool wear diagnostics. This, for the first time, enables the concept of digital twins to be potentially applied to the TCM for complicated dynamic machining processes which, as far as we are aware of, has never been achieved before. Comprehensive field studies have demonstrated the effectiveness of the proposed digital twin-based TCM framework and its potential industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
EarholeDoctor完成签到,获得积分10
7秒前
Fei发布了新的文献求助30
8秒前
ybheart完成签到,获得积分10
14秒前
扬帆起航完成签到 ,获得积分10
16秒前
17秒前
这个硬盘完成签到 ,获得积分10
17秒前
研友_ndDGVn完成签到 ,获得积分10
27秒前
CLTTTt完成签到,获得积分10
28秒前
Yziii应助EarholeDoctor采纳,获得10
28秒前
whitepiece完成签到,获得积分10
29秒前
艾森豪威尔完成签到 ,获得积分10
29秒前
可爱的黄黄完成签到 ,获得积分10
30秒前
30秒前
31秒前
jbear完成签到 ,获得积分10
33秒前
安静成威完成签到 ,获得积分10
36秒前
Fei发布了新的文献求助30
36秒前
剑逍遥完成签到 ,获得积分10
41秒前
41秒前
现代的紫霜完成签到,获得积分10
43秒前
竹马完成签到 ,获得积分10
46秒前
Smoiy完成签到 ,获得积分10
46秒前
优雅含灵完成签到 ,获得积分10
47秒前
和平使命应助科研通管家采纳,获得20
51秒前
小九完成签到,获得积分10
52秒前
牛奶面包完成签到 ,获得积分10
53秒前
天菱完成签到 ,获得积分20
55秒前
xiaoxiaoxingqiu完成签到 ,获得积分10
56秒前
57秒前
何晓俊发布了新的文献求助10
59秒前
Even9完成签到,获得积分10
1分钟前
1分钟前
陈三亮完成签到 ,获得积分0
1分钟前
xwl9955发布了新的文献求助10
1分钟前
zhangzhangzhang完成签到 ,获得积分10
1分钟前
Fei发布了新的文献求助30
1分钟前
Twistti完成签到 ,获得积分10
1分钟前
陌小石完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Regression-Based Normative Data for Psychological Assessment 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099819
求助须知:如何正确求助?哪些是违规求助? 2751281
关于积分的说明 7612331
捐赠科研通 2403098
什么是DOI,文献DOI怎么找? 1275171
科研通“疑难数据库(出版商)”最低求助积分说明 616276
版权声明 599053