Digital twin-based anomaly detection for real-time tool condition monitoring in machining

异常检测 机械加工 停工期 机床 数字化制造 工程类 计算机科学 实时计算 数据挖掘 机械工程 可靠性工程 制造工程
作者
Zepeng Liu,Zi–Qiang Lang,Yufei Gui,Yunpeng Zhu,Hatim Laalej
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:75: 163-173 被引量:66
标识
DOI:10.1016/j.jmsy.2024.06.004
摘要

Real-time tool condition monitoring (TCM) has been emerging as a key technology for smart manufacturing. TCM can improve the dimensional accuracy of products, minimize machine tool downtime, and eliminate scraps and re-work costs. Digital twins offer new opportunities for real-time monitoring of machining processes, which can, in principle, take into account changes in machining processes and operating environments, help understand mechanisms of cutting tool wear, and improve the anomaly detection accuracy and fault diagnosis results. The present study exploits these potential advantages of digital twins and proposes a new digital twin-based anomaly detection framework for real-time TCM in machining. The framework of the digital twin consists of three parts: the physical product, the virtual product and data flow connections. Within this framework of the digital twin, the "physical product" represents the machining processes. The "virtual product" includes a real-time data-driven model representing the dynamic relationship between vibration data measured from machining processes as well as the model frequency features (MFFs)-based diagnostics for cutting tool anomaly detection. The "data flow connections" involve real-time measured vibration data and machine tool numerical controller (NC) signals providing real-time information on machine tool dynamics and various machining processes. The novelty is associated with an innovative integration of real-time data-driven modeling, MFFs extraction, and MFFs and machine tool NC signal-based tool wear diagnostics. This, for the first time, enables the concept of digital twins to be potentially applied to the TCM for complicated dynamic machining processes which, as far as we are aware of, has never been achieved before. Comprehensive field studies have demonstrated the effectiveness of the proposed digital twin-based TCM framework and its potential industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程昌盛发布了新的文献求助10
刚刚
abcdefg发布了新的文献求助10
刚刚
外向从灵完成签到,获得积分20
1秒前
1秒前
zzz完成签到,获得积分10
1秒前
Max完成签到,获得积分10
1秒前
在水一方应助郝岩采纳,获得10
1秒前
小杨完成签到,获得积分10
1秒前
SANDY完成签到,获得积分10
2秒前
慕青应助ZIS采纳,获得10
2秒前
2秒前
生动的迎梅完成签到,获得积分10
2秒前
阿然完成签到,获得积分10
2秒前
11111完成签到,获得积分10
3秒前
zhang完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
EgbertW完成签到,获得积分10
3秒前
打打应助虚幻谷波采纳,获得10
3秒前
3秒前
Ohhruby完成签到,获得积分10
4秒前
1900tdlemon发布了新的文献求助10
4秒前
4秒前
彭于晏应助淡淡的雪采纳,获得10
4秒前
22nd完成签到,获得积分10
5秒前
子晗张完成签到 ,获得积分10
5秒前
5秒前
11完成签到,获得积分10
5秒前
5秒前
11111发布了新的文献求助10
6秒前
Orange应助pbj采纳,获得10
6秒前
7秒前
yyyjx完成签到,获得积分10
7秒前
7秒前
7秒前
Nemo1234发布了新的文献求助10
8秒前
阿王发布了新的文献求助10
8秒前
8秒前
8秒前
Yuan完成签到 ,获得积分10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699543
求助须知:如何正确求助?哪些是违规求助? 5131434
关于积分的说明 15226342
捐赠科研通 4854543
什么是DOI,文献DOI怎么找? 2604759
邀请新用户注册赠送积分活动 1556119
关于科研通互助平台的介绍 1514388