Digital twin-based anomaly detection for real-time tool condition monitoring in machining

异常检测 机械加工 停工期 机床 数字化制造 工程类 计算机科学 实时计算 数据挖掘 机械工程 可靠性工程 制造工程
作者
Zepeng Liu,Zi–Qiang Lang,Yufei Gui,Yunpeng Zhu,Hatim Laalej
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:75: 163-173 被引量:4
标识
DOI:10.1016/j.jmsy.2024.06.004
摘要

Real-time tool condition monitoring (TCM) has been emerging as a key technology for smart manufacturing. TCM can improve the dimensional accuracy of products, minimize machine tool downtime, and eliminate scraps and re-work costs. Digital twins offer new opportunities for real-time monitoring of machining processes, which can, in principle, take into account changes in machining processes and operating environments, help understand mechanisms of cutting tool wear, and improve the anomaly detection accuracy and fault diagnosis results. The present study exploits these potential advantages of digital twins and proposes a new digital twin-based anomaly detection framework for real-time TCM in machining. The framework of the digital twin consists of three parts: the physical product, the virtual product and data flow connections. Within this framework of the digital twin, the "physical product" represents the machining processes. The "virtual product" includes a real-time data-driven model representing the dynamic relationship between vibration data measured from machining processes as well as the model frequency features (MFFs)-based diagnostics for cutting tool anomaly detection. The "data flow connections" involve real-time measured vibration data and machine tool numerical controller (NC) signals providing real-time information on machine tool dynamics and various machining processes. The novelty is associated with an innovative integration of real-time data-driven modeling, MFFs extraction, and MFFs and machine tool NC signal-based tool wear diagnostics. This, for the first time, enables the concept of digital twins to be potentially applied to the TCM for complicated dynamic machining processes which, as far as we are aware of, has never been achieved before. Comprehensive field studies have demonstrated the effectiveness of the proposed digital twin-based TCM framework and its potential industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgcyp完成签到,获得积分10
4秒前
ysh完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
7秒前
wang完成签到,获得积分10
8秒前
Jzhang应助Yimim采纳,获得10
9秒前
沐风发布了新的文献求助20
10秒前
汉关发布了新的文献求助10
12秒前
12秒前
葶儿完成签到,获得积分10
12秒前
安详中蓝完成签到 ,获得积分10
13秒前
呆萌士晋发布了新的文献求助10
13秒前
13秒前
15秒前
呆头发布了新的文献求助10
17秒前
若水发布了新的文献求助200
18秒前
18秒前
19秒前
子川发布了新的文献求助10
19秒前
大头娃娃没下巴完成签到,获得积分10
21秒前
liyuchen完成签到,获得积分10
21秒前
CipherSage应助Lxxx_7采纳,获得10
22秒前
烟花应助永远少年采纳,获得10
22秒前
meng发布了新的文献求助10
24秒前
科研通AI5应助贪吃的猴子采纳,获得10
26秒前
26秒前
可爱的彩虹完成签到,获得积分10
26秒前
小确幸完成签到,获得积分10
26秒前
彭于晏应助毛毛虫采纳,获得10
27秒前
LilyChen完成签到 ,获得积分10
27秒前
Owen应助Su采纳,获得10
27秒前
27秒前
27秒前
28秒前
29秒前
yyyy关注了科研通微信公众号
29秒前
Jane完成签到 ,获得积分10
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824