Deep Learning Models for Fine-Scale Climate Change Prediction: Enhancing Spatial and Temporal Resolution Using AI

比例(比率) 气候变化 空间生态学 人工智能 环境科学 时间尺度 气候学 计算机科学 地理 地图学 地质学 海洋学 生态学 生物
作者
Gagan Deep,Jyoti Verma
出处
期刊:Advances in geographical and environmental sciences 卷期号:: 81-100 被引量:1
标识
DOI:10.1007/978-981-97-1685-2_5
摘要

Climate change prediction is a critical aspect of understanding and mitigating the impacts of global environmental changes. This chapter provides an in-depth overview of deep learning models specifically designed for fine-scale climate change prediction, with a primary focus on improving spatial and temporal resolution. The notion of deep learning and its applicability to studies on climate change are introduced at the beginning of the chapter. It examines the special powers of deep learning models, such as their capacity to draw significant characteristics from massive climate datasets and automatically identify intricate patterns. There is discussion of the application of recurrent neural networks (RNNs) and convolutional neural networks (CNNs) in climate modeling, highlighting their potential in capturing spatial dependencies and temporal dynamics. Data preparation is a crucial component of deep learning models for predicting climate change. The chapter delves into various preprocessing techniques, such as data normalization, feature engineering, and dimensionality reduction, that aid in optimizing model performance. Additionally, the chapter explores downscaling methods that utilize deep learning to enhance the resolution of climate data, enabling more accurate predictions at localized levels. The application of super-resolution mapping using deep learning techniques is also discussed, showcasing its potential in generating high-resolution climate maps from low-resolution inputs. To show the value of deep learning models in fine-scale climate change prediction, a number of case studies and real-world examples are provided. Furthermore, the chapter addresses the performance evaluation metrics and methodologies for assessing the accuracy and reliability of deep learning models in climate prediction. Lastly, the chapter outlines future research directions and potential advancements in deep learning for fine-scale climate change prediction. The chapter concludes by highlighting the significance of deep learning models in advancing our understanding of climate change dynamics and aiding decision-making processes for sustainable environmental management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xy完成签到,获得积分10
刚刚
刚刚
壮观溪流发布了新的文献求助10
刚刚
刚刚
1秒前
七七完成签到,获得积分10
1秒前
忧心的洙发布了新的文献求助10
1秒前
xliiii发布了新的文献求助10
1秒前
小鱼完成签到,获得积分10
2秒前
热气球完成签到,获得积分10
2秒前
wanci应助ppat5012采纳,获得10
3秒前
yiyi关注了科研通微信公众号
3秒前
3秒前
Steffi完成签到,获得积分10
3秒前
积极的睫毛完成签到,获得积分10
4秒前
amberzyc应助玫瑰少年采纳,获得10
4秒前
Hossiu发布了新的文献求助10
5秒前
逝水无痕完成签到,获得积分10
5秒前
5秒前
Tomyyh完成签到,获得积分10
5秒前
6秒前
KEYANXIAOBAI发布了新的文献求助10
6秒前
徐yy完成签到 ,获得积分10
6秒前
XUXU发布了新的文献求助10
6秒前
..完成签到,获得积分10
6秒前
Legend_完成签到 ,获得积分10
6秒前
缓慢天菱完成签到,获得积分10
6秒前
zhangkx23完成签到,获得积分10
7秒前
小阳肖恩完成签到 ,获得积分10
7秒前
高登登发布了新的文献求助10
8秒前
9秒前
酥酥脆完成签到,获得积分10
9秒前
9秒前
小羊完成签到,获得积分10
9秒前
顾矜应助UGO采纳,获得10
11秒前
童宝完成签到,获得积分10
11秒前
寻找组织应助爪人猫采纳,获得30
11秒前
在水一方应助Luhh采纳,获得10
12秒前
快乐非笑完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997