已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Models for Fine-Scale Climate Change Prediction: Enhancing Spatial and Temporal Resolution Using AI

比例(比率) 气候变化 空间生态学 人工智能 环境科学 时间尺度 气候学 计算机科学 地理 地图学 地质学 海洋学 生态学 生物
作者
Gagan Deep,Jyoti Verma
出处
期刊:Advances in geographical and environmental sciences 卷期号:: 81-100 被引量:1
标识
DOI:10.1007/978-981-97-1685-2_5
摘要

Climate change prediction is a critical aspect of understanding and mitigating the impacts of global environmental changes. This chapter provides an in-depth overview of deep learning models specifically designed for fine-scale climate change prediction, with a primary focus on improving spatial and temporal resolution. The notion of deep learning and its applicability to studies on climate change are introduced at the beginning of the chapter. It examines the special powers of deep learning models, such as their capacity to draw significant characteristics from massive climate datasets and automatically identify intricate patterns. There is discussion of the application of recurrent neural networks (RNNs) and convolutional neural networks (CNNs) in climate modeling, highlighting their potential in capturing spatial dependencies and temporal dynamics. Data preparation is a crucial component of deep learning models for predicting climate change. The chapter delves into various preprocessing techniques, such as data normalization, feature engineering, and dimensionality reduction, that aid in optimizing model performance. Additionally, the chapter explores downscaling methods that utilize deep learning to enhance the resolution of climate data, enabling more accurate predictions at localized levels. The application of super-resolution mapping using deep learning techniques is also discussed, showcasing its potential in generating high-resolution climate maps from low-resolution inputs. To show the value of deep learning models in fine-scale climate change prediction, a number of case studies and real-world examples are provided. Furthermore, the chapter addresses the performance evaluation metrics and methodologies for assessing the accuracy and reliability of deep learning models in climate prediction. Lastly, the chapter outlines future research directions and potential advancements in deep learning for fine-scale climate change prediction. The chapter concludes by highlighting the significance of deep learning models in advancing our understanding of climate change dynamics and aiding decision-making processes for sustainable environmental management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gy发布了新的文献求助10
4秒前
科研通AI2S应助lyyyy采纳,获得10
5秒前
6秒前
趴下快跑完成签到 ,获得积分10
7秒前
ZJY完成签到 ,获得积分10
12秒前
朴实凡柔发布了新的文献求助10
14秒前
科研通AI2S应助123采纳,获得10
14秒前
15秒前
天天快乐应助ma采纳,获得10
15秒前
陈哥完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
嘿嘿发布了新的文献求助10
19秒前
Gtty发布了新的文献求助10
19秒前
19秒前
邓大卫完成签到,获得积分10
19秒前
HHHSean完成签到,获得积分10
21秒前
Freja发布了新的文献求助10
22秒前
夏侯嘉发布了新的文献求助10
22秒前
24秒前
dream177777完成签到 ,获得积分10
24秒前
zkwgly发布了新的文献求助10
25秒前
25秒前
2710660736完成签到,获得积分10
25秒前
25秒前
27秒前
29秒前
30秒前
所所应助2710660736采纳,获得10
30秒前
晚来天欲雪完成签到,获得积分20
30秒前
震动的大白菜真实的钥匙完成签到,获得积分10
31秒前
老实冰海完成签到,获得积分20
31秒前
顺利毕业完成签到 ,获得积分10
31秒前
32秒前
33秒前
ma发布了新的文献求助10
34秒前
爆米花应助眯眯眼的沛柔采纳,获得10
36秒前
小高发布了新的文献求助10
37秒前
郎晟发布了新的文献求助10
37秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171307
求助须知:如何正确求助?哪些是违规求助? 2822210
关于积分的说明 7938464
捐赠科研通 2482717
什么是DOI,文献DOI怎么找? 1322709
科研通“疑难数据库(出版商)”最低求助积分说明 633722
版权声明 602627