Deep Learning Models for Fine-Scale Climate Change Prediction: Enhancing Spatial and Temporal Resolution Using AI

比例(比率) 气候变化 空间生态学 人工智能 环境科学 时间尺度 气候学 计算机科学 地理 地图学 地质学 海洋学 生态学 生物
作者
Gagan Deep,Jyoti Verma
出处
期刊:Advances in geographical and environmental sciences 卷期号:: 81-100 被引量:1
标识
DOI:10.1007/978-981-97-1685-2_5
摘要

Climate change prediction is a critical aspect of understanding and mitigating the impacts of global environmental changes. This chapter provides an in-depth overview of deep learning models specifically designed for fine-scale climate change prediction, with a primary focus on improving spatial and temporal resolution. The notion of deep learning and its applicability to studies on climate change are introduced at the beginning of the chapter. It examines the special powers of deep learning models, such as their capacity to draw significant characteristics from massive climate datasets and automatically identify intricate patterns. There is discussion of the application of recurrent neural networks (RNNs) and convolutional neural networks (CNNs) in climate modeling, highlighting their potential in capturing spatial dependencies and temporal dynamics. Data preparation is a crucial component of deep learning models for predicting climate change. The chapter delves into various preprocessing techniques, such as data normalization, feature engineering, and dimensionality reduction, that aid in optimizing model performance. Additionally, the chapter explores downscaling methods that utilize deep learning to enhance the resolution of climate data, enabling more accurate predictions at localized levels. The application of super-resolution mapping using deep learning techniques is also discussed, showcasing its potential in generating high-resolution climate maps from low-resolution inputs. To show the value of deep learning models in fine-scale climate change prediction, a number of case studies and real-world examples are provided. Furthermore, the chapter addresses the performance evaluation metrics and methodologies for assessing the accuracy and reliability of deep learning models in climate prediction. Lastly, the chapter outlines future research directions and potential advancements in deep learning for fine-scale climate change prediction. The chapter concludes by highlighting the significance of deep learning models in advancing our understanding of climate change dynamics and aiding decision-making processes for sustainable environmental management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DWF完成签到,获得积分20
刚刚
叶舟完成签到,获得积分10
刚刚
Kingcrimson发布了新的文献求助10
刚刚
Natforever完成签到 ,获得积分10
刚刚
刘晓宇完成签到,获得积分10
刚刚
1秒前
alverine完成签到,获得积分10
1秒前
Wind发布了新的文献求助10
1秒前
2秒前
月下荷花发布了新的文献求助10
2秒前
郭达仲完成签到 ,获得积分10
3秒前
花开的声音1217完成签到,获得积分10
4秒前
孙福禄应助mrz采纳,获得10
4秒前
开心蘑菇应助Natforever采纳,获得10
4秒前
5秒前
do0完成签到,获得积分10
5秒前
6秒前
甜菜发布了新的文献求助10
7秒前
冰冰发布了新的文献求助10
7秒前
9秒前
狗不理发布了新的文献求助10
9秒前
帅仁123完成签到,获得积分20
9秒前
晴晴完成签到,获得积分10
10秒前
书生完成签到,获得积分10
10秒前
在水一方应助星星采纳,获得10
10秒前
10秒前
Rachel完成签到,获得积分20
11秒前
SHIROKO完成签到,获得积分10
11秒前
nns完成签到,获得积分10
11秒前
派大星发布了新的文献求助10
12秒前
兜兜窦完成签到,获得积分10
12秒前
seven发布了新的文献求助10
12秒前
danny发布了新的文献求助10
13秒前
13秒前
深情安青应助贪玩的听荷采纳,获得10
14秒前
文艺的又亦完成签到,获得积分10
14秒前
黄黄完成签到,获得积分0
14秒前
顺利紫山发布了新的文献求助10
15秒前
西红柿完成签到,获得积分0
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635