Deep Learning Models for Fine-Scale Climate Change Prediction: Enhancing Spatial and Temporal Resolution Using AI

比例(比率) 气候变化 空间生态学 人工智能 环境科学 时间尺度 气候学 计算机科学 地理 地图学 地质学 海洋学 生态学 生物
作者
Gagan Deep,Jyoti Verma
出处
期刊:Advances in geographical and environmental sciences 卷期号:: 81-100 被引量:1
标识
DOI:10.1007/978-981-97-1685-2_5
摘要

Climate change prediction is a critical aspect of understanding and mitigating the impacts of global environmental changes. This chapter provides an in-depth overview of deep learning models specifically designed for fine-scale climate change prediction, with a primary focus on improving spatial and temporal resolution. The notion of deep learning and its applicability to studies on climate change are introduced at the beginning of the chapter. It examines the special powers of deep learning models, such as their capacity to draw significant characteristics from massive climate datasets and automatically identify intricate patterns. There is discussion of the application of recurrent neural networks (RNNs) and convolutional neural networks (CNNs) in climate modeling, highlighting their potential in capturing spatial dependencies and temporal dynamics. Data preparation is a crucial component of deep learning models for predicting climate change. The chapter delves into various preprocessing techniques, such as data normalization, feature engineering, and dimensionality reduction, that aid in optimizing model performance. Additionally, the chapter explores downscaling methods that utilize deep learning to enhance the resolution of climate data, enabling more accurate predictions at localized levels. The application of super-resolution mapping using deep learning techniques is also discussed, showcasing its potential in generating high-resolution climate maps from low-resolution inputs. To show the value of deep learning models in fine-scale climate change prediction, a number of case studies and real-world examples are provided. Furthermore, the chapter addresses the performance evaluation metrics and methodologies for assessing the accuracy and reliability of deep learning models in climate prediction. Lastly, the chapter outlines future research directions and potential advancements in deep learning for fine-scale climate change prediction. The chapter concludes by highlighting the significance of deep learning models in advancing our understanding of climate change dynamics and aiding decision-making processes for sustainable environmental management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小敦发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
翔哥发布了新的文献求助10
1秒前
阿航完成签到,获得积分10
1秒前
情怀应助Mrrr采纳,获得10
2秒前
2秒前
调研昵称发布了新的文献求助10
3秒前
淡定念波完成签到,获得积分10
3秒前
3秒前
卷卷王发布了新的文献求助10
4秒前
4秒前
天天快乐应助phz采纳,获得10
5秒前
lili完成签到,获得积分10
6秒前
sakurai应助通~采纳,获得10
6秒前
6秒前
6秒前
柴火烧叽发布了新的文献求助10
7秒前
香蕉觅云应助内向秋寒采纳,获得10
7秒前
8秒前
8秒前
zyh完成签到,获得积分10
8秒前
8秒前
小马甲应助Anxinxin采纳,获得10
8秒前
ww发布了新的文献求助10
8秒前
这小猪真帅完成签到,获得积分10
9秒前
Hulda完成签到,获得积分10
9秒前
可靠访蕊完成签到 ,获得积分10
10秒前
深情安青应助科研小白采纳,获得10
10秒前
八八完成签到,获得积分20
11秒前
请叫我风吹麦浪应助AIA7采纳,获得10
11秒前
智齿怪物一号完成签到,获得积分10
11秒前
舒适山槐完成签到,获得积分10
11秒前
HJJHJH发布了新的文献求助10
11秒前
易哒哒发布了新的文献求助10
11秒前
ZZZpp完成签到,获得积分10
12秒前
大个应助756采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794