Deep Learning Models for Fine-Scale Climate Change Prediction: Enhancing Spatial and Temporal Resolution Using AI

比例(比率) 气候变化 空间生态学 人工智能 环境科学 时间尺度 气候学 计算机科学 地理 地图学 地质学 海洋学 生态学 生物
作者
Gagan Deep,Jyoti Verma
出处
期刊:Advances in geographical and environmental sciences 卷期号:: 81-100 被引量:1
标识
DOI:10.1007/978-981-97-1685-2_5
摘要

Climate change prediction is a critical aspect of understanding and mitigating the impacts of global environmental changes. This chapter provides an in-depth overview of deep learning models specifically designed for fine-scale climate change prediction, with a primary focus on improving spatial and temporal resolution. The notion of deep learning and its applicability to studies on climate change are introduced at the beginning of the chapter. It examines the special powers of deep learning models, such as their capacity to draw significant characteristics from massive climate datasets and automatically identify intricate patterns. There is discussion of the application of recurrent neural networks (RNNs) and convolutional neural networks (CNNs) in climate modeling, highlighting their potential in capturing spatial dependencies and temporal dynamics. Data preparation is a crucial component of deep learning models for predicting climate change. The chapter delves into various preprocessing techniques, such as data normalization, feature engineering, and dimensionality reduction, that aid in optimizing model performance. Additionally, the chapter explores downscaling methods that utilize deep learning to enhance the resolution of climate data, enabling more accurate predictions at localized levels. The application of super-resolution mapping using deep learning techniques is also discussed, showcasing its potential in generating high-resolution climate maps from low-resolution inputs. To show the value of deep learning models in fine-scale climate change prediction, a number of case studies and real-world examples are provided. Furthermore, the chapter addresses the performance evaluation metrics and methodologies for assessing the accuracy and reliability of deep learning models in climate prediction. Lastly, the chapter outlines future research directions and potential advancements in deep learning for fine-scale climate change prediction. The chapter concludes by highlighting the significance of deep learning models in advancing our understanding of climate change dynamics and aiding decision-making processes for sustainable environmental management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiyi完成签到,获得积分20
刚刚
杨二锤发布了新的文献求助10
刚刚
1秒前
1秒前
所所应助张巨锋采纳,获得10
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
Wind应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
litt应助科研通管家采纳,获得10
2秒前
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
李健的小迷弟应助金肆采纳,获得10
3秒前
11发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
可爱的函函应助gdh采纳,获得10
4秒前
4秒前
橘子发布了新的文献求助10
4秒前
5秒前
qqq完成签到 ,获得积分10
6秒前
猪猪猪发布了新的文献求助10
6秒前
李健的粉丝团团长应助Lin采纳,获得10
6秒前
7秒前
qiii发布了新的文献求助10
7秒前
7秒前
8秒前
yiyi发布了新的文献求助10
8秒前
9秒前
wx完成签到,获得积分20
9秒前
王小姚发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233