Intelligent medical diagnosis and treatment for diabetes with deep convolutional fuzzy neural networks

卷积神经网络 人工智能 计算机科学 模糊逻辑 深度学习 人工神经网络 医疗 机器学习 医学 重症监护医学
作者
Wenhui Zhou,Xiaomin Liu,Hongtao Bai,Lili He
出处
期刊:Information Sciences [Elsevier]
卷期号:677: 120802-120802
标识
DOI:10.1016/j.ins.2024.120802
摘要

The advent of smart healthcare has significantly heightened the importance of computer technologies in supporting medical diagnosis and treatment. Nevertheless, the challenges of mining latent knowledge within diagnostic data and explaining results to healthcare professionals have limited the application of many algorithms in clinical practice. To address these issues, our study introduces an Interpretable Predictor with Deep Convolutional Fuzzy Neural Network (IP-DCFNN). The proposed model is capable of assessing disease risk based on individual data and providing interpretable justifications to aid in medical diagnosis and treatment decisions. By deconstructing the fuzzy inference process and incorporating convolutional neural network, our approach enhances the ability to discover underlying information while maintaining transparency and interpretability. Furthermore, we introduce a grid partition-based method for initializing the antecedent parameters and a hybrid approach that combines gradient descent with least squares estimation for training. Compared with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Deep Neural Networks (DNN) Our model has an average improvement of 7.4% on prediction accuracy. More importantly, it can extract interpretable insights from membership functions, rule bases, and fuzzy contributions, offering valuable knowledge for medical research on type 2 diabetes, supporting intelligent diagnostic processes and providing personalized healthcare recommendations. The model can also be applied on the diagnosis and treatment of various other diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orange完成签到,获得积分10
刚刚
田様应助楷沅采纳,获得10
1秒前
2秒前
lixx完成签到,获得积分10
2秒前
李健的小迷弟应助KerwinYang采纳,获得10
2秒前
研友_n0kqxL发布了新的文献求助50
2秒前
糖果色的夏季完成签到,获得积分10
2秒前
单纯易真发布了新的文献求助10
2秒前
3秒前
3秒前
Sweet完成签到 ,获得积分10
4秒前
4秒前
NexusExplorer应助科研大捞采纳,获得10
4秒前
5秒前
www发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
Jasper应助东方向露采纳,获得30
6秒前
6秒前
彭于晏应助luochunsheng采纳,获得10
7秒前
longer发布了新的文献求助10
8秒前
9秒前
南风未起发布了新的文献求助10
9秒前
英姑应助优美紫槐采纳,获得10
9秒前
哭泣又柔发布了新的文献求助10
9秒前
10秒前
LG发布了新的文献求助10
10秒前
梦想成为高知悍妇完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
浪子应助火星上送终采纳,获得10
14秒前
16秒前
16秒前
失眠的契完成签到,获得积分10
17秒前
17秒前
17秒前
英俊的铭应助南风未起采纳,获得10
18秒前
Youlu发布了新的文献求助10
20秒前
哭泣又柔完成签到,获得积分10
21秒前
Miss-Li完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720530
求助须知:如何正确求助?哪些是违规求助? 5260834
关于积分的说明 15291524
捐赠科研通 4869955
什么是DOI,文献DOI怎么找? 2615129
邀请新用户注册赠送积分活动 1565084
关于科研通互助平台的介绍 1522191