Intelligent medical diagnosis and treatment for diabetes with deep convolutional fuzzy neural networks

卷积神经网络 人工智能 计算机科学 模糊逻辑 深度学习 人工神经网络 医疗 机器学习 医学 重症监护医学
作者
Wenhui Zhou,Xiaomin Liu,Hongtao Bai,Lili He
出处
期刊:Information Sciences [Elsevier]
卷期号:677: 120802-120802
标识
DOI:10.1016/j.ins.2024.120802
摘要

The advent of smart healthcare has significantly heightened the importance of computer technologies in supporting medical diagnosis and treatment. Nevertheless, the challenges of mining latent knowledge within diagnostic data and explaining results to healthcare professionals have limited the application of many algorithms in clinical practice. To address these issues, our study introduces an Interpretable Predictor with Deep Convolutional Fuzzy Neural Network (IP-DCFNN). The proposed model is capable of assessing disease risk based on individual data and providing interpretable justifications to aid in medical diagnosis and treatment decisions. By deconstructing the fuzzy inference process and incorporating convolutional neural network, our approach enhances the ability to discover underlying information while maintaining transparency and interpretability. Furthermore, we introduce a grid partition-based method for initializing the antecedent parameters and a hybrid approach that combines gradient descent with least squares estimation for training. Compared with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Deep Neural Networks (DNN) Our model has an average improvement of 7.4% on prediction accuracy. More importantly, it can extract interpretable insights from membership functions, rule bases, and fuzzy contributions, offering valuable knowledge for medical research on type 2 diabetes, supporting intelligent diagnostic processes and providing personalized healthcare recommendations. The model can also be applied on the diagnosis and treatment of various other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意剑成发布了新的文献求助10
刚刚
4秒前
5秒前
满意剑成完成签到,获得积分10
7秒前
大个应助ggb采纳,获得10
8秒前
8秒前
陈那个希发布了新的文献求助10
8秒前
11秒前
杨凤艳发布了新的文献求助10
12秒前
妖娃娃举报lxq求助涉嫌违规
15秒前
17秒前
科研通AI2S应助Sunny--李采纳,获得10
18秒前
Charlie完成签到 ,获得积分10
18秒前
打打应助韩哈哈采纳,获得10
19秒前
20秒前
旭旭完成签到 ,获得积分10
20秒前
碧蓝一兰完成签到 ,获得积分10
23秒前
Daisy完成签到 ,获得积分10
24秒前
25秒前
25秒前
cicytjsxjr完成签到,获得积分10
25秒前
陈那个希完成签到,获得积分20
28秒前
Jasper应助hulin_zjxu采纳,获得10
31秒前
33秒前
打打应助老子讨厌看文献采纳,获得10
34秒前
快乐美女完成签到,获得积分10
34秒前
学渣路过完成签到,获得积分10
35秒前
医路上的小学生完成签到,获得积分10
35秒前
42秒前
44秒前
王佳豪发布了新的文献求助10
45秒前
47秒前
一一应助洁净山灵采纳,获得10
49秒前
韩哈哈发布了新的文献求助10
49秒前
50秒前
54秒前
55秒前
zhihaijun发布了新的文献求助10
56秒前
58秒前
8D完成签到,获得积分10
58秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264392
求助须知:如何正确求助?哪些是违规求助? 2904482
关于积分的说明 8330528
捐赠科研通 2574750
什么是DOI,文献DOI怎么找? 1399369
科研通“疑难数据库(出版商)”最低求助积分说明 654478
邀请新用户注册赠送积分活动 633194