Intelligent medical diagnosis and treatment for diabetes with deep convolutional fuzzy neural networks

卷积神经网络 人工智能 计算机科学 模糊逻辑 深度学习 人工神经网络 医疗 机器学习 医学 重症监护医学
作者
Wenhui Zhou,Xiaomin Liu,Hongtao Bai,Lili He
出处
期刊:Information Sciences [Elsevier BV]
卷期号:677: 120802-120802
标识
DOI:10.1016/j.ins.2024.120802
摘要

The advent of smart healthcare has significantly heightened the importance of computer technologies in supporting medical diagnosis and treatment. Nevertheless, the challenges of mining latent knowledge within diagnostic data and explaining results to healthcare professionals have limited the application of many algorithms in clinical practice. To address these issues, our study introduces an Interpretable Predictor with Deep Convolutional Fuzzy Neural Network (IP-DCFNN). The proposed model is capable of assessing disease risk based on individual data and providing interpretable justifications to aid in medical diagnosis and treatment decisions. By deconstructing the fuzzy inference process and incorporating convolutional neural network, our approach enhances the ability to discover underlying information while maintaining transparency and interpretability. Furthermore, we introduce a grid partition-based method for initializing the antecedent parameters and a hybrid approach that combines gradient descent with least squares estimation for training. Compared with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Deep Neural Networks (DNN) Our model has an average improvement of 7.4% on prediction accuracy. More importantly, it can extract interpretable insights from membership functions, rule bases, and fuzzy contributions, offering valuable knowledge for medical research on type 2 diabetes, supporting intelligent diagnostic processes and providing personalized healthcare recommendations. The model can also be applied on the diagnosis and treatment of various other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
中和皇极应助111采纳,获得10
1秒前
明亮芯发布了新的文献求助10
1秒前
岳岳岳完成签到 ,获得积分10
2秒前
平淡的亦丝完成签到,获得积分10
3秒前
林正心发布了新的文献求助20
4秒前
闪闪静槐完成签到,获得积分10
4秒前
Lucas应助小吴同志采纳,获得10
4秒前
zyj发布了新的文献求助10
5秒前
6秒前
6秒前
蓝蜻蜓发布了新的文献求助10
8秒前
8秒前
烟花应助皮崇知采纳,获得10
9秒前
9秒前
大椒完成签到 ,获得积分10
10秒前
10秒前
Aeae发布了新的文献求助10
11秒前
11秒前
xuyang完成签到,获得积分20
12秒前
12秒前
14秒前
14秒前
16秒前
16秒前
Homura发布了新的文献求助10
16秒前
晨屿发布了新的文献求助10
16秒前
抗体药物偶联完成签到,获得积分10
16秒前
李爱国应助人间打气筒采纳,获得10
16秒前
中和皇极应助健哥采纳,获得20
18秒前
19秒前
醉熏的鑫发布了新的文献求助10
19秒前
皮崇知发布了新的文献求助10
20秒前
pengyh8完成签到 ,获得积分10
22秒前
22秒前
24秒前
Aeae完成签到,获得积分20
24秒前
26秒前
JamesPei应助醉熏的鑫采纳,获得10
26秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662