重新调整用途
生物信息学
生物化学
化学
肽
计算生物学
生物技术
生物
生态学
基因
作者
S. Ustun Yilmaz,Hichem Moulahoum,Kerem Tok,Figen Zihnioğlu
标识
DOI:10.1016/j.ijbiomac.2024.132869
摘要
Repurposing discarded cells stands as a groundbreaking paradigm shift in sustainable biotechnology, with profound implications across diverse industrial sectors. Our study proposes a transformative concept by harnessing histone proteins from discarded CHO cells to produce bioactive peptides. We systematically isolated and hydrolyzed histones using Trypsin and Neutrase enzymes, optimizing reaction conditions. Ultrafiltration yielded distinct peptide fractions (<3 kDa and 3–10 kDa), which we analyzed for DPP-IV inhibition, antioxidant potential, and other activities. Furthermore, LC-Q-TOF-MS analysis and in silico tools unveiled the structural composition of bioactive peptides within these fractions. Three peptide sequences with high bioactivity potential were identified: KLPFQR, VNRFLR, and LSSCAPVFL. Our findings demonstrated exceptional DPP-IV inhibition, potent antioxidant effects, and effective anti-lipid peroxidation activities, surpassing reference compounds. Hemolytic activity assessment indicated promising biocompatibility, enhancing therapeutic application prospects. Pioneering the strategic repurposing of discarded cells, this research addresses cost-efficiency in cell-based studies and promotes sustainable use of biological resources across sectors. This novel approach offers an efficient, eco-friendly method for bioactive molecule procurement and resource management, revolutionizing cell culture studies and biotechnological applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI