作者
Uyen Nguyen Phuong Le,Yu-Jen Chang,Chih‐Hao Lu,Yeh Chen,Wen‐Chi Su,Shao-Ting Chao,Lia A. Baltina,С. Ф. Петрова,Sin-Rong Li,Mien‐Chie Hung,Michael M. C. Lai,Л. А. Балтина,Cheng‐Wen Lin
摘要
COVID-19 pandemic is predominantly caused by SARS-CoV-2, with its main protease, Mpro, playing a pivotal role in viral replication and serving as a potential target for inhibiting different variants. In this study, potent Mpro inhibitors were identified from glycyrrhizic acid (GL) derivatives with amino acid methyl/ethyl esters. Out of the 17 derivatives semisynthesized, Compounds 2, 6, 9, and 15, with methionine methyl esters, D-tyrosine methyl esters, glutamic acid methyl esters, and methionines in the carbohydrate moiety, respectively, significantly inhibited wild-type SARS-CoV-2 Mpro-mediated proteolysis, with IC50 values ranging from 0.06 μM to 0.84 μM. They also demonstrated efficacy in inhibiting trans-cleavage by mutant Mpro variants (Mpro_P132H, Mpro_E166V, Mpro_P168A, Mpro_Q189I), with IC50 values ranging from 0.05 to 0.92 μM, surpassing nirmatrelvir (IC50: 1.17-152.9 μM). Molecular modeling revealed stronger interactions with Valine166 in the structural complex of Mpro_E166V with the compounds compared to nirmatrelvir. Moreover, these compounds efficiently inhibited the post-entry viral processes of wild-type SARS-CoV-2 single-round infectious particles (SRIPs), mitigating viral cytopathic effects and reducing replicon-driven GFP reporter signals, as well as in vitro infectivity of wild-type, Mpro_E166V, and Mpro_Q189I SRIPs, with EC50 values ranging from 0.02 to 0.53 μM. However, nirmatrelvir showed a significant decrease in inhibiting the replication of mutant SARS-CoV-2 SRIPs carrying Mpro_E166V (EC50: >20 μM) and Mpro_Q189I (EC50: 13.2 μM) compared to wild-type SRIPs (EC50: 0.06 μM). Overall, this study identifies four GL derivatives as promising lead compounds for developing treatments against various SARS-CoV-2 strains, including Omicron, and nirmatrelvir-resistant variants.