HTBE-Net: A hybrid transformer network based on boundary enhancement for breast ultrasound image segmentation

乳腺超声检查 变压器 分割 计算机科学 人工智能 计算机视觉 电子工程 工程类 电气工程 医学 乳腺癌 电压 乳腺摄影术 内科学 癌症
作者
Jiali Feng,Xiaoxuan Dong,Xiaojuan Liu,Xufei Zheng
出处
期刊:Displays [Elsevier]
卷期号:84: 102753-102753 被引量:1
标识
DOI:10.1016/j.displa.2024.102753
摘要

Automatic segmentation algorithms for breast ultrasound images are crucial for early breast cancer detection and treatment. Existing methods centered on Convolutional Neural Networks (CNNs) and Transformers has made great strides by focusing on the development of multi-branch coding networks with multiple receptive fields. However, there are still challenges in the practical application of these methods. Current methods tend to coarsely fuse features from each branch, and the lack of effective feature interaction between high-dimensional features with different receptive fields leads to models that do not take full advantage of the diverse perspectives of the breast lesion regions. In addition, the coarse-grained feature interaction strategy tends to lead to the blurring of lesion boundaries. To address the above challenges, a novel dual-branch automatic segmentation algorithm, named HTBE-Net, is proposed in this paper. Specifically, a Boundary Guided Module (BGM) is firstly designed to guide the encoder to outline the precise lesion regions. As a complement, a Selective Feature Enhancement Module (SFEM) is designed and applied to each branch of the encoder to highlight the weights of the boundary features. Finally, a Long-Short Range Attention Interaction Fusion (LSIF) module was designed to carefully fuse encoder features from different branches. This module facilitates the feature interaction between the features and utilizes different receptive fields to optimize the network's segmentation of the lesion regions. Extensive experiments based on three ultrasound image datasets show that HTBE-Net outperforms existing state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助鲜于夜白采纳,获得10
1秒前
Ada发布了新的文献求助30
1秒前
2秒前
糖糖完成签到 ,获得积分10
2秒前
2秒前
莫道发布了新的文献求助10
2秒前
Shi完成签到 ,获得积分10
3秒前
3秒前
Orange应助陈枇杷采纳,获得10
4秒前
4秒前
4秒前
搜集达人应助小机灵鬼儿采纳,获得10
4秒前
6秒前
小二郎应助玻璃弹珠采纳,获得10
6秒前
十七发布了新的文献求助10
6秒前
广州城建职业技术学院完成签到,获得积分10
7秒前
7秒前
六水居士发布了新的文献求助10
8秒前
过时的雁桃完成签到,获得积分10
8秒前
xiaoyao发布了新的文献求助150
9秒前
王小明发布了新的文献求助10
9秒前
科目三应助Dnan采纳,获得10
10秒前
11秒前
朴素摩托发布了新的文献求助10
11秒前
11秒前
wangzai111发布了新的文献求助10
12秒前
13秒前
14秒前
王小明完成签到,获得积分10
16秒前
早岁发布了新的文献求助10
17秒前
儞是哪个完成签到,获得积分20
20秒前
yancy完成签到,获得积分10
21秒前
搜集达人应助smile采纳,获得10
21秒前
爆米花应助十七采纳,获得10
22秒前
六水居士完成签到,获得积分10
22秒前
22秒前
25秒前
玻璃弹珠发布了新的文献求助10
25秒前
26秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570