HTBE-Net: A hybrid transformer network based on boundary enhancement for breast ultrasound image segmentation

乳腺超声检查 变压器 分割 计算机科学 人工智能 计算机视觉 电子工程 工程类 电气工程 医学 乳腺癌 电压 乳腺摄影术 内科学 癌症
作者
Jiali Feng,Xiaoxuan Dong,Xiaojuan Liu,Xufei Zheng
出处
期刊:Displays [Elsevier BV]
卷期号:84: 102753-102753 被引量:4
标识
DOI:10.1016/j.displa.2024.102753
摘要

Automatic segmentation algorithms for breast ultrasound images are crucial for early breast cancer detection and treatment. Existing methods centered on Convolutional Neural Networks (CNNs) and Transformers has made great strides by focusing on the development of multi-branch coding networks with multiple receptive fields. However, there are still challenges in the practical application of these methods. Current methods tend to coarsely fuse features from each branch, and the lack of effective feature interaction between high-dimensional features with different receptive fields leads to models that do not take full advantage of the diverse perspectives of the breast lesion regions. In addition, the coarse-grained feature interaction strategy tends to lead to the blurring of lesion boundaries. To address the above challenges, a novel dual-branch automatic segmentation algorithm, named HTBE-Net, is proposed in this paper. Specifically, a Boundary Guided Module (BGM) is firstly designed to guide the encoder to outline the precise lesion regions. As a complement, a Selective Feature Enhancement Module (SFEM) is designed and applied to each branch of the encoder to highlight the weights of the boundary features. Finally, a Long-Short Range Attention Interaction Fusion (LSIF) module was designed to carefully fuse encoder features from different branches. This module facilitates the feature interaction between the features and utilizes different receptive fields to optimize the network's segmentation of the lesion regions. Extensive experiments based on three ultrasound image datasets show that HTBE-Net outperforms existing state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助嘛呱采纳,获得10
刚刚
无油烟发布了新的文献求助10
1秒前
史蒂夫完成签到,获得积分10
2秒前
叮叮咚咚发布了新的文献求助10
3秒前
任伟超发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得20
4秒前
英姑应助科研通管家采纳,获得10
4秒前
lalala应助科研通管家采纳,获得10
4秒前
lalala应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得30
4秒前
所所应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得100
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
lalala应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
一笑奈何完成签到,获得积分10
5秒前
xxfsx应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Zhang完成签到,获得积分10
6秒前
6秒前
Jrssion发布了新的文献求助10
6秒前
Hello应助13369932259采纳,获得10
10秒前
WangDecheng完成签到,获得积分10
10秒前
虚拟的若完成签到,获得积分10
10秒前
10秒前
12秒前
GD88完成签到 ,获得积分10
12秒前
壮观以松完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295803
求助须知:如何正确求助?哪些是违规求助? 4445172
关于积分的说明 13835666
捐赠科研通 4329791
什么是DOI,文献DOI怎么找? 2376755
邀请新用户注册赠送积分活动 1372067
关于科研通互助平台的介绍 1337408