HTBE-Net: A hybrid transformer network based on boundary enhancement for breast ultrasound image segmentation

乳腺超声检查 变压器 分割 计算机科学 人工智能 计算机视觉 电子工程 工程类 电气工程 医学 乳腺癌 电压 乳腺摄影术 内科学 癌症
作者
Jiali Feng,Xiaoxuan Dong,Xiaojuan Liu,Xufei Zheng
出处
期刊:Displays [Elsevier BV]
卷期号:84: 102753-102753 被引量:4
标识
DOI:10.1016/j.displa.2024.102753
摘要

Automatic segmentation algorithms for breast ultrasound images are crucial for early breast cancer detection and treatment. Existing methods centered on Convolutional Neural Networks (CNNs) and Transformers has made great strides by focusing on the development of multi-branch coding networks with multiple receptive fields. However, there are still challenges in the practical application of these methods. Current methods tend to coarsely fuse features from each branch, and the lack of effective feature interaction between high-dimensional features with different receptive fields leads to models that do not take full advantage of the diverse perspectives of the breast lesion regions. In addition, the coarse-grained feature interaction strategy tends to lead to the blurring of lesion boundaries. To address the above challenges, a novel dual-branch automatic segmentation algorithm, named HTBE-Net, is proposed in this paper. Specifically, a Boundary Guided Module (BGM) is firstly designed to guide the encoder to outline the precise lesion regions. As a complement, a Selective Feature Enhancement Module (SFEM) is designed and applied to each branch of the encoder to highlight the weights of the boundary features. Finally, a Long-Short Range Attention Interaction Fusion (LSIF) module was designed to carefully fuse encoder features from different branches. This module facilitates the feature interaction between the features and utilizes different receptive fields to optimize the network's segmentation of the lesion regions. Extensive experiments based on three ultrasound image datasets show that HTBE-Net outperforms existing state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
孙福禄应助qyang采纳,获得10
3秒前
3秒前
11发布了新的文献求助10
4秒前
潇洒的凡灵完成签到,获得积分10
5秒前
加鱼完成签到,获得积分10
5秒前
Hello应助豆豆采纳,获得10
6秒前
我是老大应助kk采纳,获得10
6秒前
独孤九原发布了新的文献求助10
6秒前
白纸发布了新的文献求助10
6秒前
哇咔咔发布了新的文献求助10
6秒前
7秒前
乐乐应助wyz采纳,获得10
8秒前
楠楠完成签到 ,获得积分10
8秒前
yhhy关注了科研通微信公众号
9秒前
bulinggu发布了新的文献求助10
9秒前
11秒前
13秒前
天天快乐应助吃吃采纳,获得30
13秒前
14秒前
14秒前
14秒前
青衫发布了新的文献求助10
15秒前
纯真冰蝶发布了新的文献求助10
16秒前
17秒前
俗丨完成签到,获得积分10
17秒前
打打应助Culto采纳,获得10
17秒前
18秒前
18秒前
18秒前
威威完成签到,获得积分10
19秒前
zhangyu应助豆豆采纳,获得10
19秒前
cherlie应助jjjjj采纳,获得10
20秒前
21秒前
dz发布了新的文献求助10
21秒前
22秒前
zhx发布了新的文献求助30
22秒前
wyz发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619